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Abstract

This paper concerns the nite element simulation of the diffraction of a timeabaic

acoustic wave in presence of an arbitrary mean ow. Considering thatequfor the per-
turbation of displacement (due to Galbrun), we derive a low Mach formulatithe prob-
lem which is proved to be of Fredholm type and is therefore well-suited discaetization
by classical Lagrange nite elements. Numerical experiments are done icage of a
potential ow for which an exact approach is available and a good ageetis observed.
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1 Introduction

The reduction of noise in aeronautics motivates an intengsgearch in aeroacous-
tics. In particular, there is a need for ef cient numericabls to simulate acoustic
propagation in a mean ow. We are interested here in solMmglinearized prob-
lem in the frequency domain, by a nite element method abl&ak@ into account
general geometries and ows. Up to our knowledge, only thiepial case (when
the ow and the source are irrotational) which leads to a Heditz like scalar
equation has been completely handled [6,8].

For an arbitrary ow, the problem is much more dif cult to s@, due to the cou-
pling between acoustic and hydrodynamic perturbationsarft be modelized by
the Linearized Euler Equations whose unknowns are the nhations of velocity
and pressure or, alternatively, by the less well known egoaif Galbrun whose
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unknown is the perturbation of displacement [12]. Altholegs usual, this second
approach has several advantages : in particular, it alloweryasimple treatment
of the boundary conditions, which are generally expresséunespect to the dis-
placement.

Recently, a new numerical approach has been developed addtedlin the case
of a parallel shear ow [2,4]: this method relies on a niteeghent discretization
combined with Perfectly Matched Layers of a regularizedaliation of Galbrun's
equation. The regularization process consists in addititgetequation a term which
does not change the value of the solution (the additionad t@mishes for the solu-
tion) but which improves the mathematical properties ofgfeation : if the Mach
number does not vanish, the regularized equation appe&es aoccompact pertur-
bation of a Helmholtz like vector equation. As a consequendg well-suited for
a discretization by Lagrange nite elements.

A drawback of the method comes from the additional term, Wwhiquires the
evaluation of an oscillating integral, coupling all deggeé freedom located on the
same streamline. This dif culty can be avoided by repladinig non-local term by
its Low-Mach approximation [7].

We will show here how to extend this Low-Mach approach to tasecof a non
parallel ow. For simplicity, we restrict ourselves to thed-dimensional case.

The outline of the paper is the following. The regularizedb@an's equation is
derived in the next section. The main result is the caloohatif the hydrodynamic
equation. An expression of the solution of this equationoat Mach number is
then postulated. Section 3 is devoted to the diffractiorbjerm. We consider the
diffraction of an incident acoustic wave by a bounded olbletan presence of a
ow uniform at in nity. A formulation of the problem, with banded Perfectly
Matched Layers, is given and proved to be of Fredholm typenéhical results are
nally presented in section 4, in the case of a potential @md compared with the
results of a full potential approach.

2 Derivation of the modi ed Galbrun equation

2.1 Galbrun's equation

Consider a stationary subsonic ow of a perfect compressilt satisfying Eu-
ler's equations. This ow is characterized by its non uniforelds of velocity v,
density o, pressurgyp and sound velocitg,. We aim at simulating the propaga-
tion of a time harmonic perturbation (with an™" time dependence). Galbrun's
equation, whose unknown is the perturbation of displacémers obtained by a



linearization process (see for example [11]). It reads bevis :

D2u . :
0Diz r ( oGdivu)+ divur py 'ru rpp=0 (1)
Du , . .
where— = il u+r u vq Let us emphasize that usual quantities, as the

perturbations of pressure and velocpy,andvg, solutions of the Linearized Euler
Equations, can be recovered from the knowledge by the following formula :

Ppe = oGdivu u rp and VE:?);Jr Vo u: 2)

Notice that in the particular case of a parallel shear owhwi§, pp andcy uniform,
Galbrun's equation reduces to:

D2u
Dt2
It has been observed that a direct nite element resolutiof8p(using Lagrange
elements) leads to a polluted result, due to a lack éfcoerciveness. A way to

restore coerciveness is to consider the following “regedat’ (or “augmented”)
formulation of (3):

cr (divu) =0: (3)

D2u
Dt?2

cr (divu) + spcurl(curlu )=0 (4)

wheresy 2 R* and the new unknown
= curlu

(which is called here the “vorticity”) is introduced [3]. Weill extend this regu-
larization technique to the general equation (1). Then atbgynamic” relation
between andu will is derived and solved in the low Mach approximation.

2.2 Regularization

Letsy be a positive real function. The regularized equation aateatto (1) is given
by:
D2u
Dtz
+divur pp ‘ru rp=0
The hydrodynamic equation is then derived by taking the @ufl), which gives:

r ( oGgdivu)+ curl( oSo(curlu )

(5)

2

u+divurpo rurp =0

curl el



and after some calculations (see appendix):

D? D
Diz = Zﬁ(Bu) Cu (6)
with
X2
Bu= r vy N —— (7)
j=1 o @x
and , !
X @y @ @y , @
CQu = ' N = . KA
o1 @K FY0 " @k V,?‘ "@x @«
1% 1 @p @p
+ .. =V — Vv N
0 OC%@?(r po @x ry

Notice that for a parallel shear ow (witpy uniform andvgy = Vvp.1(X2)e; for
instance)Cu = 0.

2.3 Low Mach approximation

In the case of a parallel shear ow, it was possible to derivexact expression of
versuau as a convolution integral along the stream lines [3]. It isst@ightforward

to extend this approach in the general case. However, unitabke hypotheses,
simple approximations of can be obtained. For instance, if we suppose that the
ow is slow and has slow variations:

Jr vo(x)j !
Vo(X)]  co(x)

Vo(X)j  G(x) and

and if there are no sources of vortices, which implies thaéries like an acoustic
wave:

jr u(x)j b

ju)j - c(x)’
we can neglect the contributid@u in (6). Then if the mean ow does not present
recirculations (closed streamlines), integration of €&ds to:

D
P - o8
Dt u

whose solution has the followinlgow Machapproximation:

2
M = i'—Bu: (8)

This formula can be derived rigorously in the case of a parahear ow as an
approximation of the convolution formula, which becomeghiy oscillating at
low Mach [7]. Notice that if the ow is uniform (not necesshrislow), =0



andBu = 0,sothat = [y .As aconsequence, the Low-Mach approximation
remains valid for large Mach numbers, if the ow is slowly yarg.

Let us point out that, contrary to most of the approximate e®gdroposed in the lit-
erature [10,1], the coupling between acoustics and hyaraaycs is not neglected
here.

Summing up, using (5) and (8), we get the modi ed Galbrun ¢éiquavhich will
be solved in practice:

D2u . :
GMy & o= I (ochdivu)+ divur po
Dt 5 (9)
'rru rpp+curl oS curlu il—Bu =0

Notice that in presence of a source tefrmm (1) with curlf = 0, we obtain in the
same wayGM u = f.

3 Setting of the diffraction problem

Let us now consider a particular diffraction problem whicill be solved by using
the previous model.

3.1 Geometry and incident wave

Let O be a regular bounded domain®f occupied by a rigid obstacle. The mean
ow (Vo, o;Po;C) is de ned inR?n0, it is such that ¢; po; Co; Vo and its deriva-

tives @« belong toL! (R?n0O) with
@x
lengno 00(2) >0

Moreover the ow is supposed to be almost uniform far from ttostacle :

9R > O=forjxj > R; vo(X) = vi € ( o(X);po(X);(X)=( 1;p1;C):

The regularization functios, is then chosen such thag(x) = ¢ forjxj > R:
The hypothesis of uniformity of the ow far from the obstadteplies that:

8u 2 HL.(R?n0); Bu(x) =0 forjxj > R:



As a consequence, each component of the solutioh(9) satis es the convected
Helmholtz equation foyxj > R :

Df' .
e c =0; (10)
D, . @ . . . o .
Whereﬁ = il +wv @x It is well known that this equation is equivalent to
a classical Helmholtz equatio® + K?~ = 0 for '~ de ned by '<(X1= 1 ;X,) =
- . V2 Vi k
"Xy xo)ek tXawith 2 =1 2, = andRk = —.
( 1 2) 1 C% 1 fcl 1

Then we can consider an incident wave which is for instandarmepwvave of this
uniform medium:
!

Uine (X) = €1 X1 e, withk; = ———
|nc() 1 1 C +V1

and the diffraction problem is the following: nd 2 H}.(R2nO) such thatigs =
U U IS outgoing and

GMu=0 in R2nO
2 (11)
u:n = curlu il—Bu =0 on @:

The rst boundary condition comes from the rigidity of thestacle 6 denotes
the unitary exterior normal t@D). The second one is simply (8) written on the
boundary : it is required for well-posedness. This radiatondition is discussed
in the next paragraph.

3.2 Radiation condition and PMLs

As we have seen, the hypothesis of uniformity of the ow faorr the obstacle
implies that each component ofjs satis es (10) forjxj > R . Then we say thdt
is outgoing if'~is outgoing (in the classical sense) and we sayubatis outgoing
if each component afy4; is outgoing.

In practice, we use PMLs to select this outgoing solutiomégotmethods like a
coupling with an integral representation could also be usEde computational
domain is de ned by | = B nO whereB, is the following square

BL = f(X1;X2)9%X1) <R + L andjx,j <R + Lg

andL denotes the width of the absorbing layers. The model in thediklvolves
a complex parameter such thake( ) > Oand=m( ) < 0. Finally, the problem



that we solve is the following: ndigs 2 H( ) such that (withu = Ugt + Uinc):

GLM Ugit = f in L

2
u:n = curlu iI—Bu =0 on@ (12)
ugr =0 on @B

wheref = G "™ u;, is a source term supported in
= f(X1;X2)3X1j <R andjx,j < RgnO:

The index means that the corresponding operator has been modi ed@diogao
the following substitution:

@, .0

with jdenedby ;(x)=1 if jxjj <R and ;(x)= if jxjj>R:
: @y @yl
For example, divu = X)— + X)——:
p 1( )@x 2( )@)4(

In practice, we solve instead of (12) a transmission probAgtin the total eld u

as unknown in and the diffracted eldug; as unknown in the absorbing layers.
The incident eld then results in non-homogeneous transimrsconditions at the
interface between and the absorbing layers.

3.3 Well-posedness

We choose now, = c. For the sake of clarity, we consider here a simpler problem
which corresponds to the eld produced by a souicend u 2 HY( ) such that

GMu=f* in L

2
u:n = curlu iI—Bu =0 on @ (13)
u=0 on @B

Let us emphasize that the proof of well-posedness for thoblpm can be eas-
ily extended to the diffraction problem, using standarduargnts for handling the
heterogeneous conditions @. Problem (13) has the following variational form:

Findu 2 V such th%Bv 2V

a(u;v)+ bu;v) = fv



whereV = fu 2 HY( ()% u:injg =0 andu;gg =0gand

£ o3
a(u;v) = 0 (div udiv v + curl ucurl v)
z 2 z
0 2
(Vo r Ju (Vo r )v+ —  oGBucurly;
7 L :II. 2 ZI!
b(u;v) = o (2Qi(vo r Ju+!lu) v+ divur pp ‘ru r py v:
L 1 2

Theorem 1 Problem (13) is of Fredholm type if

IVo(X)j* 2 it Vo(x)j > O (14)

Co(X)? !

inf 1
X2

Remark 1 Notice that, for a given subsonic ow, condition (14) is sa&dif the
frequency is high enough.

Proof. We will prove that, under hypothesis (14), the bilineania(u; v) has the
following decompositiora(u;v) = c(u;v) + d(u;v) wherec(u; V) is coercive on
V andd(u;v) is a compact perturbation (i.e. associated to a compacatipern
V). This proves the theorem &&u; v) is also a compact perturbation.

First, integrating by parts, we obtain the following idéptgeneralizing Costabel's
one[5]:8u; v 2 HY( )?

z z
0% (div udiv v+ curl ucurl v)= 0%
L 1 2 L 1 2

|

L @@ @da@
. @x @x @x, @x
2 2 e

@ @% @X

Forv 2 V, usingv:njg , = 0, the boundary term becomes:

r-ur v+du;v)

with d(u;v) =

V.

z ! z " !
oC(Z) nl@ nzg V= 0(% @ @

@x @x @. @x Q@x

Finally, foru 2 V, usingu:n;g, = 0, we notice that the term in the brack-
ets vanishes on the outer boundary (which is polygonal).tRerboundary of
the obstacle, we introduce a regular extension ai its neighborhood and using
r(u n) n=0,weget:
Z ! z
@ @
o(% Ni——

@. ox “ex '~ @DOC%[(U ryn nl(n v):

The compactness a{u; v) then follows from standard arguments.



On the other hand, the coerciveness follows from the folhgwnhequalities:

Z o3
% 0r ur u 0(vor)u(vor)u
z 12 12 7
o(G | Voi*)ir uj®+min(<e( );<e(l=)) o(G | Voi*)ir uj

Ln

Y4 4

and 0GBu curlu P3 0GJr Vojjr uj?:

4 Numerical results

First, let us make some remarks. The Low MakNi() approximation (8), exact in
the case of uniform ows, was already validated for paradleéar ows in [3]. In
this section, we want to show that this approximation ex¢eitd non-parallel mean
ows is still relevant. Note that analytical solutions arerggrally unknown and in
order to validate this approximation, numerical comparsswith another approach
must be done. In the frequency domain, the “potential” caseldeen largely stud-
ied and provides good solutions [6,8]. In this potential rapph, a mean ow is
chosen such thaty = r ' g where' ¢ is a scalar function. In the particular context
of the scattering problems (sg&.1), one can then prove that the perturbation of the
Euler speed is irrotational and so derives from a scalar potentiaMge= r ' .
Moreover the knowledge of this potential also makes it giesb derive the other
Euler perturbationpg; g (pression and density). Lastly, instead of solving the lin-
earized Euler equations, we can consider the followingwedgmt scalar problem:
Find' g 2 H|},C(R2n0) suchthat ¢ ', isoutgoing and:
|
D 1D E
D@t ¢ Dt
2 @ _ .
@ 0 on@:

idiv( of ' £) =0 in R?n0;
0 (15)

The approximation of this equation by the Lagrange nitenedmt discretization
coupled with a PML formalism does not raise any problem. Rergotential ap-
proach (15), the errors are mainly due to the nite elememgragimation and to
the use of PMLs (more precisely, the truncation of the unbdedrdomain by a -
nite widthL of absorbing layers). On the other hand the problem can eddly
the Low Mach Galbrun method; let us emphasize that cont@gutlvg, curlu
does not vanish and an error is produced by its Low Mach ajpmiadion. Through
the formulae (2), one can computd_& approximationvEM of the perturbation
of the Euler speed and compare itdg = r ' . Let us point out that botlt"
andve require the evaluation of the rst derivatives of the nitéeenent solutions
u and' . The comparison between both solutions measures theyobthe LM
approximation.



To do the simulations, mean ows are needed. For simplieity,have added the
assumption of incompressibility for these ows which thesrify the scalar equa-
tion ' ¢ = 0. Inthis way, analytical mean ows around many geometridgh
be derived. A particular simple case is the ow around a eirai center(0; 0) and
radiusr . In this case, the potential is de ned by = vy Xx3(1 + r?=(x2 + x3)).

Fig. 1 (left) shows the Mach eld of the mean ow fdvl; = v; =g = 0:1 (its

maximum is2v; and is located near the circle), thkecomponent of the perturba-
tion of the Euler speed:™ and of the difference ™  ve. There is a very good
agreement; the difference can be detected only in a smallvenere the velocity
takes its largest values. Fig. 2 represents, in the logdatesthe relative error be-

Fig. 1. Mean ow (left), real part of/ "} (center) and/EY, v (right) forM; =0:1

tween the Galbrun and potential solutions ven8us, for M; 2 [0; 0:4]. As could
be predicted, the error is quadratic (varying IMe ).

relative error
'y

=
T

107

10 ‘ » M1
10* 10"

Fig. 2. Relative errokvEM  vek 2=kvek > versusM; in log-log scale

Finally, since we supposed that the mean ows are potentidliacompressible, it
is easy to compute them via a nite elements solution of a &eplproblem. So,
one can treat more complex geometries. For example, we lempared the two
methods for a 2D aircraft carriage model fdr; = 0:1 andM; = 0:2 with a
point source in the carriage (see Fig. 3). We see a good agreadiatween the two
solutions. Fig. 4 shows the far- eld patterns obtained frora Galbrun solution
and compared to the one corresponding to the no- ow expearinWe clearly see
the effect of the ow on the directivity of the sound.
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1.07 0.1
0.461 0.05
-0.145 0
-0.752 -0.05
-1.36 -0.1
2.64 0.2
1.20 0.1
-0.236 0
-1.68 -0.1
-3.12 -0.2

Fig. 3. Real part of £} (left) andvg), v (right) for My = 0:1 (up) and0:2 (down)

270 270

Fig. 4. Far- eld patternM;, =0 (-), M1 =0:1(0)andM; =0:2(+)

Appendix

Let u be a regular solution of (1) and let us prove that (6) holds. &ycern of
conciseness, we only give the main steps of this calculation

D2u D2u D2u
Step 1 curl — =1 N —+ ourl —
L °Dt2 ° ptz " ° Dt2 ,
D2u D2 '
=r o =5+ +2Bu+ Gu
° ptz = % pt2 G

X _ _
with B de ned by (7) andGiu = @ox, o n @ @ox,y @

wa @ @x @x @x
. . X @p
Step 2 curl(divur pp ‘r u r p)=r (divu)*r pg r @—?( ATy
! i=1

. (o) g, 1D . .
= e divu + 2 D2 r pp+ oGu (using (1) to compute (divu))
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X
with Czuzi ! @prpo r @ AT

010G @K
Now, withC= G + G, step 1 and step 2 lead to

2 2

curl o—u+ divur pp ‘ru rp = OD—+2 oBu+ oCu
Dt?2 : Dt?2 | (16)
- r(@ , r(o) 1 D4
divu 2 - r Po c(2)r Pot+r o Di2

Finally the state lavwpg = f ( o) (isentropic mean ow) leads to

0
f = A 0= & candr (@ =R or o:f;O)rpo (17)

and (16) gives the hydrodynamic equation (6).
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