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Abstract

Numerical schemes for solving 3-D paraxial equations are constructed using splitting techniques. The solution can be
reduced to a series of 2-D paraxial equations in each direction of splitting. The discretization along the depth is based on
higher-order conservative schemes. The discretization along the transverse variables is based on higher-order finite difference
variational schemes. Numerical experiments illustrate the advantages of higher-order schemes, which are much less dispersive,
even for a small number of discretization points per wavelength. ©2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Paraxial approximations of the wave equation are commonly used when waves propagate in directions close
to a preferred direction, which plays the role of an evolution variable. The operator in the Helmholtz equation is
expressed as the product of two one-way operators that involve the square root of an operator. The nonlocal operator
square root is then approximated to obtain a local parabolic partial differential equation. Accuracy depends on the
magnitude of the error in the approximation; wider propagation angles are permitted with better approximations.
Several approximations have been designed, such as the 15, 45, ‘aagp0ximations [1]. One of the main
applications of paraxial approximations is to range-dependent ocean acoustic propagation problems, where the
range is the evolution variable. Tappert’s parabolic equation was the first paraxial approximation applied to ocean
acoustics [2]. Numerous subsequent contributions have been made in this area [3]. In this paper, we apply paraxial
approximations to 3-D migration problems in geophysics, in whiishthe evolution variable. For this application,
Claerbout was the first to introduce 15 and €§uations for the extrapolation of 2-D seismic data [4,5].

The discretization of the paraxial wave equation involves two kinds of variables, the depth varatilethe
transverse variables for 2-D problems andx1, x2) for 3-D problems. One approach for solving paraxial wave
equations is based on the use of discrete extrapolation operators [6]. Another approach is based on approximating
derivatives with finite differences or finite elements. Paraxial wave equations are commonly used for solving 2-D
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problems [7]. Their extension to 3-D problems requires the solution at each extrapolation step of a 2-D problem in
the transverse plane, which gives rise to a large linear system that can be solved using iterative methods [8,9].

To avoid solving a transverse 2-D problem, Collino and Joly have constructed new families of paraxial approxi-
mations that are compatible with splitting methods [1]. In contrast to classical alternating direction methods [10,11],
this approach introduces directions for the splitting other than the usual cross-line and in-line directions. This allows
one to obtain 45 and 6@pproximations that do not contain the undesirable anisotropic effects that arise in Brown’s
approximation [10]. The problem is then reduced to a series of 2-D extrapolations in each direction. Recently and
independently of this work, Ristow and Ruhl used the same idea of operator splitting in alternate directions [12].

In this paper, we describe a systematic way of obtaining accurate discretizations, both in the depth and in the
transverse variables, for solving the 3-D paraxial equations introduced in [1] with splitting methods. It is well known
that lower order numerical schemes can give rise to numerical dispersion (see [13] for the classical discretization of
2-D paraxial equations). Since dispersion is even more important in 3-D problems, we have developed higher-order
numerical schemes that attenuate these effects. We construct our schemes in general heterogeneous media, study
their accuracy via a dispersion analysis, and compare them with numerical experiments.

The paper is organized as follows. Section 2 is devoted to the continuous equations. In Section 2.1, we discuss
some properties of the classical paraxial approximations. In Section 2.2, we describe the paraxial approximations
introduced in [1], which are compatible with four directions of splitting. Section 3 concerns the discretization
of a model 2-D equation. Higher-order discretizations in the depth variable are presented in Section 3.2. The
discretization in the transverse variable with variational finite differences techniques is presented in Section 3.3. We
compare the dispersion of several particular schemes in Section 4. We present numerical experiments in Section 5.

2. Multiway splitting for 3-D paraxial equations
2.1. The classical paraxial equations

The solution of the wave equation in the whole homogeneous space,
S5~ a5 =0, (1)

with appropriate boundary and initial conditions, can be split into an up-going wave and a down-going wave. We
are interested in the up-going wave, which satisfies the one-way wave equation,

di 2k2 1/2
d—”+i9<1—c"> 5=0, @)
Z c

for z > 0, wherek = (k1, k2), [k|? = k? + k3, and? is the Fourier transform af with respect to both time and the
transverse directions,

v(k1, k2, 7, w) = / / / v(x1, x2,2,1) g (kuxithoxo—or) dx1 dxp dr. )

A paraxial equation is an approximation of Eq. (2) that is obtained by replacing the exact squéterpgt)/2
with a rational approximation that we denote ({dy— |/<|2)§{)2, wherex = (k1, k2), k1 = ck1/w, andk2 = ckz/w.
With this approach, a nonlocal equation is approximated by a partial differential equation.

The rational approximation is designed to be valid whigty » is sufficiently small (i.e., for propagation directions

close to thez-direction). We define the error,

e() = |(L— P2 = @ = [k[Panl. (4)
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Fig. 1. The erroe(x) of two classical approximations, with respecktoandx,. (a) 15 approximation, (b) 45approximation.

The 15 paraxial equation is based on the linear Taylor expansion,

(L= )Y = 1= Flc? + Ol |, (5)
The 45 paraxial equation is based on the Padé approximation,
1— 3|2

1— kM2 =
(21— ] R

+O(l[®). (6)

The accuracy of these two classical approximations is illustrated in Fig. 1, which represents the variations of
the errore(k1, k2) With respect tac; andx, as follows: the larger the white regiqa(x) < 10~3) the better the
approximation. Transforming the 1&pproximation to physical space and usinig denote the frequency domain
solution, we obtain

v iw ic

—+t—v+

Av =0, 7
0z c 2w v (7)

whereA = 32 + 92 is the 2-D Laplacian and; = 3/dx;. We handle the second term exactly with the change of
variablex = v€“%/¢ and obtain the 15paraxial equation,

—+ —Au=0. (8)
Since A is a sum of 1-D operators, Eq. (8) can be solved with the splitting method [14], which is useful for
solving evolution equations involving a sum &f operators of the form,
ou Vs
a—(x, 7) — iZAj(z)u(x, 2)=0, z>0, x=(x1,x)€R? u(z=0) =up inR2 9
Z
j=1

Knowingu(zo), splitting methods involve computingzo + Az) in an approximate way. This leads us to define
Ny intermediate unknowns;, j = 1, ..., N; satisfying

Bwj . ’
a—(x,S)—IAj(zo+s)w,-(x,s)=0, 0<s <Az xecR?

s .

o — o) = | uo), forj =1, inR?
wjls =0) = { wj_1(Az), forj>1, in R2 (10)

and to seit(zo + Az) = wy, (Az). Problem (10) is still an evolution problem irbut with a single operator.
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Fig. 2. The errokr(x) of splitting approximations that correspond to (a) two directions (Brown’s approximation) and (b) four directions (the
Maxi-isotropic approximatior; = 0.25).

It is straightforward to apply this technique to Eq. (8) with = —c/2wd; andN; = 2. This case involves the
solution of 1-D problems in the; andx; directions. On the other hand, the splitting method is not efficient when
applied directly to the 45paraxial equation,

0 .
o (0? 1\t
A=—2 (C—2+ZA> A. (12)

Indeed, there is no decomposition afinto a sum of simple 1-D operators that is consistent with thie 45
approximation order. The classical way to approximate Eq. (11), posed in a bounded domain and subject to boundary
conditions, is to discretiza on a uniform grid. This leads to a large, sparse system of equations that can be solved
using iterative methods [9]. To avoid this inefficient approach, Brown [10] has suggested the approximation,

(1P =1- 2

2 1
ke 2
1,2
1—‘—1K1 1-—

"22 2.2
17 T OWiky), (13)
152
which has been used by other authors [11]. The accuracy of this approximation is highly anisotropic. The error is

consistent with the 45equation(e(x) = O(|«|%)) in thexk1 = 0 andk» = O directions. In other directions, the
approximation is only slightly better than the“1&pproximation, as one can see by comparing Figs. 1 and 2.

2.2. The four-way splitting equations

The basic idea developed in [1] is to achieve greater accuracy for approximations involving only one transverse
space variable per fraction by introducing more than two directions of splitting. The simplest family of paraxial
equations is based on the four directions of splitting,x1 + x2, x1 — x2, x2, and the rational approximation,

1— x’DY?=1- R@k), (14)
4 2
_ bj (IC . nj)
R(x) = Jz_:l—l "L (15)

wheren; = (cosa;, sina;) is the unit vector associated with thith directione; = (j — 1)« /2. The conditions

a; > 0 andb; > 0 must be satisfied to ensure well-posedness. To prevent the approximation error in the square
root from blowing-up in certain directions inside the unit disk < 1, it is necessary to require & a; < 1.
Approximations consistent with the 4&pproximation (i.e., such that®) = O(|«|®)) correspond to a system
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satisfied by the coefficients; andb;. This leads to a family of 45approximations depending on one parameter

by that has to be chosen in the interval [1/12, 5/12] in order to ensure the conditions 6< 1 andb; > O:

1-2b 1 1
a1 = = ax = a3z = 1%2.

(16)

Criteria based on the errelx) are proposed for the choice bf in [1]. In Fig. 2, we present the error of the
so-called maxi-isotropic 45approximation, which correspondsig = %. In contrast to Brown’s approximation,
the quality of this approximation is comparable to the classicadproximation not only in the; andx; directions
but also in all other directions. The paraxial equation corresponding to Eq. (14) is

ou w 4
——i—) Aju=0, a7
0z c
j=1
w? -1
_ N e N2 2
Aj=—b; ( =z taj Dj) Dy, (18)

whereD; = n; - (31, d2) is the directional derivative. Since eadh is a 1-D operator, this family of equations
lends itself to a splitting method in the horizontal variables.

It was shown in [1] how to design other families of paraxial approximations of a given order of accuracy,
introducing either more than four directions for the splitting or more than one fraction per direction. We consider
approximations based on four splitting directions, which are relatively easy to implement on regular grids. This is not
a significant restriction because four directions are sufficient to achieve accurate solutions{agprégimations)
by increasing the number of fractions per direction.

Paraxial equations in heterogeneous media were proposed and analyzed in [15]. These equations are based on
defining several criteria, both mathematical and physical in nature, and selecting from a general class of possible
candidates the one that satisfies these criteria. This approach can be used to extend any paraxial equation to hetero-
geneous media. Using this approach to generalize Egs. (17) and (18), we define the new¥asable!/? and
obtain

Aj = —bj(@? + a; A9 T2AC, (19)

where A; = (cDj)2 and ¢ depends on(x1, x2, z). Paraxial equations have also been developed for problems
involving variations in density and other parameters [16,17].

For the numerical computation, the problem is defined in the cylindrical doMain{z > 0}. WhenD is
unbounded, it is necessary to introduce artificial transverse boundaries, designed such that the waves are absorbed
when they reach the boundaries. The concept of a perfectly matched layer (PML), which was originally introduced
for Maxwell’s equations [18], has been adapted to paraxial equations [19]. This approach is based on rA?Iacing
with

AS = (cdj(x1, x2) D), (20)

dj (x1, x2) = © (21)

i+ coj(x1, x2) ’
where the damping; > 0 has support in a damped region that surrounds the region of interest (m;the)

plane and is only a function of the space coordinate corresponding to directions parallel to:yeétoapproach

for constructings; is given in [20]. It can be shown by a plane wave analysis that the PML model possesses the
remarkable property of generating no reflection at the interface between the region of interest and the artificial lossy
medium. Furthermore, waves are exponentially damped in the absorbing layer.
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Fig. 3. Computational grid for the 4mpproximation with four directions of splitting.

3. Higher-order schemes for the four-way splitting equations

The approximation of the 3-D paraxial equation involves three steps. We first reduce the problem to a series
of 2-D paraxial equations using splitting techniques so that it is sufficient to know how to discretize a 2-D model
equation. In the second step, we discretize with finite differences lim the third step, we discretize along the
transverse variable with variational finite differences.

3.1. Reduction to a series of 2-D paraxial equations

Applying the splitting technique to the 3-D paraxial Eq. (17) with Dirichlet boundary conditions, we obtain a
series of 2-D paraxial equations. More precisely, the knowledge(zf + Az) from u(zg) consists in solving
Np = 4 problems as in Eq. (10). In a heterogeneous medium, it can be rewritten using the auxiliary unknowns
pjx,s)=Aj(x,z0+s)w;x,s),1<j<Npas

T x.s) — i%(pj(x,s) =0, x=(1nx)eD, 0<s<Az

as
(1)2
?(Pj + DQ/(CDA/(CZJ'(,D‘,' + bjwj)) =0, (x,5)eDx]0,AZ],
o | uzo) forj =1,
wj(s =0) = { wj_1(Az) for2<j<Np (22)

and we obtain(zo + Az) = wy,(Az). We letG/ be a grid composed on lines parallel to directjoas show in
Fig. 3. The problem defined in Eq. (22) can be decomposed as several problems, posed on each line independently.
On one particular ling2, the problem can be written as Eq. (22), with the exceptionithatries only on2. This
equation is simply a 2-D paraxial equation.

Without loss of generality, we focus on a particular directiotakes2 = (—L, L), and solve the 2-D paraxial
equation,

9 .
w0 in2 x [0, Z],
0z c
w? d .
—(p + — ™ (c—(agp + bw)) in2 x [0, Z], (23)
( =0 =w in$2,
=¢=0 onas2 x [0, Z],

wherea > 0 andb > 0 andw is related to the 2-D wave field via the change of unknowm = €@/9)%y . To
obtain a variational formulation of Eq. (23), we introduce the notations,
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9 1/2
dx) ,

5 2 ¢
(u, V)0, =/ uvdx, ullog =W w)gs, |plie = (/ ’8_
2 ’ Q|0x

d
H=1%Q) = {u/ |2 dx <oo}, V=H2) = {u c H,d—” cH, u:OOﬂB.Q},
Q X
1 ou 0v
m(u,v):/ —uvdx, V(u,v)eH, k(u,v):/c—u—vdx, Y(u,v) €V, (24)
oc o 0x dx

wherem(., .) andk(.,.) are the mass and stiffness bilinear forms. lwgtbe in V. The variational formulation of
Eq. (23) consists in findingw, ¢) : [0, Z] — V x V such that

d .

—(w, x) —iom(p, x) =0 Vx eV,
dz (25)
w’m(p, x) —k(ap +bw, x) =0 Yy eV,

w(z = 0) = wo.

We recall the classical?-stability result that any solutiotw, ¢) to Eq. (25) satisfies the energy conservation
condition, |w(z)llo,2 = llwollo,2. Vz [8].

3.2. Semi-discretization in depth

We assume that(x1, x2, z) = ¢ (x1, x2) for z € [Z", z’"+1]. In each interval§™, z’”“], Eq. (23) is rewritten as

d .
d_w =iC"w, " <z<" wE™ =w", (26)
z
whereC” = —w/c" (0? + aAfn)—le;l andAS, = ¢"d/9x(c™9/dx). In order to obtain conservative schemes,

we use the discretization in depth proposed in [8]. This approach is based on the expression of the exact solution of
(26), w(z"t1) = &€" A2 (z™) and the Padé approximant of the exponential,

K
1 N ; N

| | + ikx = _K(x) with r, such that & = _K(x) + O(jx %), 27)

1+77x  Ngx) Nk (x)

k=1

where Ng (x) = [1f;(1 4 rxx). The integration from™ to z”+1 is then formally done as followay”+1 =
]_[,le(l + 7 AzC™) "I 4 rr AzC™)w™. This procedure leads us to defifie+ 1 intermediate unknowns

wy =w", (I +rAzC"w' = I + rrAzC™wy! 4, l1<k<K. (28)

We then sety™ 1 = w’ . The Crank—Nicolson second-order scheme is obtained for thekcasé andr; = i/2.
3.3. Discretization in the transverse variable with higher-order variational finite difference schemes

The discretization inc of Eq. (23) is based on the variational formulation (25), which provides a systematic
treatment of heterogeneous media and insures stability based on energy estimates. The usual approach is to apply
standard Galerkin finite elemenfg [21], but this would yield several drawbacks, especially in view of the use of the
splitting method to get the 3-D solution, see [20]. One difficulty is related to the fact that, for higherRprfileite
elements > 2), there are additional degrees of freedom between two mesh points. Since these new degrees of
freedom do not coincide in each direction of splitting, the evaluation of the solution at these points would require the
use of interpolation procedures. Another difficulty is related to the approach for introducing the so-called modified
schemes, which are essentially based on the use of an approximate mass matrix. With a finite element approach,
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this could still be done using a mass-lumping technique, but this is not always possible with the classical degrees of
freedom [22]. We prefer to use a variational finite difference approach. The proofs are omitted but can be foundin [20].

3.3.1. Presentation of the discretization
We discretize the domain with a regular grid= i and define the shifted grid by the nodes: /> = (i 4+ 1/2)h.
We look for an approximate solution of Eq. (28%y, ¢») : [0, Z] — (Hp)?, where

Hy = {v € L2(2); Vn/lx;_1j2.x112) € PO, vn(x0) = v (xy11) = O}, (29)

is a finite dimensional space which is only included.f(s2) and not inV (PP is the space of constant functions).
Thereforek(., .) needs to be approximated by a bilinear fag., .) defined orH), (see below), and we have to solve

d .
d_z(wh’ xn) — iom(ep, xp) =0 VYxn € Hp, (30)

w?m(gn, xn) — kn(agn +bwy, xp) =0 Yyxu € Hy.

Let (xi)i=1,...,~ be the basis off), defined such that; (x;) = Sij/ﬁ forl <i,j < Nand(x:, xj)o = &ij.
The approximate solution is decomposeduasx, z) = vazlw,-(z)xl-(x), on(x,2) = Z,N:l¢i(Z)Xi(x) and
Eq. (30) is equivalent to find the vector functiofi®;,, ¢;) satisfying

dwy

d_ —ioM,®;, =0, (a)th —aKp)®, =bKp Wy, (31)
Z

where M), is a diagonal definite positive matrix, called the mass matik,);; = m(x;, x;), K, is the stiffness
matrix, (Kn)ij = kn(xi, x;), andk;, will be defined below.

3.3.2. Definition of the approximate stiffness bilinear fdgm

To derive an approximate stiffness bilinear form, the derivadif@x is approximated with a finite difference
operator defined o#f},. Let D, denote the usual second-order finite differelge (x) = ¢(x +¢) — P (x — €),
and D} its adjoint, defined a®} = —D,. For¢ € Hy, ande = h/2, we defineD;, 2¢ (x) = ¢ (x;) — ¢ (x;_1), for
x € [x;—1, x;], so that

Dyj2¢p € Hy'? = (v € L2(2) suchthabyx,_,.] € P°, V1<i<N+1}.

More generally, if we consider the finite difference operddgs,_1),/2, we haveD o, _1y/2¢ € th/z' whereg
is extended to zero outside. We introduce some real numbersand set

1 n
o = E;Vp Dp—1)h/2- (32)
p:

In particular we have), ¢ (x;11/2) = Z’[’,:lvp(qb(pr) —¢(xj—pt1))/h, and if¢p € Hy, theno,¢ is in h1/2_
We have the following lemma [20].

Lemma 3.1. The approximation (32) is of ordé&n —i.e., for any regularp, 3,0 (x) = dp(x)/dx + O(h?"), Vx —
provided that coefficients, satisfy

n
> vp@p—DF =51 forl<k <n. (33)
p=1

In that case it is denoted b}},z”] and for any regular functiop we have
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d
o o) = L) +h? RET o@D () + 02 +2),

Y h—1vp(2p—12 Tl
(2n+1)122

(34)
REZn] _

System (33) has a unique solution given explicitly in Egs. (45) and (47). We now define the approximate stiffness
bilinear form and stiffness matrix,

@0 = o o0 Vg0 € HE,

(35)
(K" = k2 G ).
3.3.3. The classical schemes
With the above definitions, we define the second-order classical scheme as
dw, .
—h ioMy @, =0, (36)
dz
(@M, — ak P, = bK*w,. (37)
After elimination of the auxiliary unknown, we get the evolution system
dw, .
@My, —aKP"YM; =1 —iwbk P W, (38)

dz

This requires the inversion @ff;,, which is easy sincéf;, is diagonal. This property is important to keep in mind
when constructing the new modified schemes.

We now analyze the order of the scheme in a homogeneous medium. Eqg. (36) can then be rewritten in the form,
for all j,

dwh 2

e CIOR '%“m(x,-, 2) =0, %whu,-, ) — Z(K,EZ"]) jilagn(xi, 2) + bwp (x;, 7)) = 0. (39)

l

To analyze this approximation, we choose as a criterion of quality the truncation error that quantifies the order
at which the exact solutiotw, ¢) of Eq. (23) satisfies the scheme. The first equation is obviously satisfied by the
exact solution. The error therefore comes from the second equation,

2
w n
EfP= =p(xj.2) = Y (K jitap(i, ) 4+ b, 2)). (40)

Lemma 3.2. The scheme (36) is of ord@n. The first term of the truncation error is of the form,

32 2(ap + bw)

X

(x,2) + O(h?"+2), (41)

whereRgz”] defined in Eq. (34)

3.3.4. The modified schemes

The idea of the modified schemes is to approxinigin the first term of Eq. (38) with a matriM}[fg] that
provides improved accuracy while preserving the bandwidth of the system to maintain the same computational cost.
This corresponds to modifying the mass matrix only in Eq. (37) to obtain

dwy

o~ M@y =0, (@M — akPo, = bk* W, (42)
E ,
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The mass matrix is defined &&f;,);; = (1/cx;, x;)o. We introduce the approximatiof,¢ (x) = (¢ (x + &) +

¢ (x—e))/2(1} = I;) of the identity operatof. For¢ € Hy ands = (2p —1)h/2, we obtain,¢ € th/z.We define

n
T, = Zupl(zp_l)h/z, wherey , are real numbers (43)
p=1

Lemma 3.3. The approximation (43) is of ord@n —i.e.,Z,p(x) = p(x) +O(h%"), Vx , for any regular function
p —if coefficients., are the unique solutions of the Vandermonde system

n
> up@p -2V =5y fori<k <n, (44)
p=1
given by
[y o — 17 (45)
Hp = .
P Ty (@m — 12— (2p — 1)?)
In this case, it is denoteﬂ,[lz”] and for any regular functiop we have
I p(x) = p(x) + W' Ry p @ (x) + O(h2+2),
rl271 _ ooty @r=1 (46)
M (2n)1221
Lemma 3.4. The coefficients, and ., satisfy the relation
mp=Q@p—"Lv,, 1<p=<n. (47)
We can now construct an approximate symmetric and positive mass matrix
1
M2y, = (EI;[,ZH]Xi,I;[fn] Xj) . (48)
0

Remark 3.1. For the same value of n, the approximatitﬁi%"lx,- and 3,52”] x; use the values of the function at the

same points. The matrice‘slf”] andK }[,2”] therefore have the same bandwidth

The idea is now to introduce the convex combination of both mass matrices (which remains positive definite and
thus invertible),

MPZ =aMy+ Q- )M, 0<a <1, (49)

and to look for a particular value @f in order to gain accuracy relative to the classical discretization, which
corresponds ta = 1. From Remark 3.1, we see tha%M}[lZZ] — aK,[f”] has the same bandwidth as the classical

scheme. To analyze the order of this scheme, we write it in a homogeneous medium as

dwy, 12 2n 2n
& WD = e, 0 =0, wle(M,[,,a]> jion(xi ) = > (K2 jiCagn + bwi) (xi, 2) = 0, (50)

1

and the truncation error still comes from the second equation

EP =0y (MPD) i, 2) = Y (K jiag + bw)(xi, 2), D

where(w, @) is the exact solution of Eq. (23), assumed regular enough.
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Proposition 3.1. The modified scheme (42), with the maMi(?‘Z] definedin (49) is of ordeé2n+2in a homogeneous
medium with the choice
[21] 2n

=1 (52)

a4 =u

We can easily relate modified schemes to Claerbout’s scheme. Actually, the classical Claerbout’'s scheme [5] is
usually seen as a modification of the stiffness matrix in Eq. (31). The second-order approxiﬁ{&iMeplaeed
by (I — yth,[lz])—lK,Ez] which is still of second-order and becomes fourth-order with the valeel/12. In the
modified schemes, the modification plays on the mass matrix, but it can also be interpreted as a modification on
the stiffness matrix by rewriting the modified mass matrimfﬁ,%;’l] =U+1- a)(MEf”] - Mh)M,jl)Mh, and
multiplying the second equation gy + (1 — a)(/\/lf”] — Mh)Mh_l)—1 in order to reobtair;, for the mass term.
The stiffness matrix is then modified and becomes

AP = (1 + Q- ey MPT — MM H TR, (53)

The modified scheme can then be rewritten as follows:

dawy, .
d—h — oM ®, =0,  ?M®;, — AP @, +bW,) = 0. (54)
z .
Forn = 1, the fourth-order modified scheme is equivalent to Claerbout’s scheme with the relatigh — o) /4.
The higher-order modified schemes can thus be interpreted as an extension to higher-orders of Claerbout’'s scheme.

3.3.5. Stability analysis
It is convenient to analyze the well-posedness of the schemes written in the form in Eq. (54) (rather than Eq.
(42)), which is very close to the continuous equations.

Proposition 3.2. If the matrixAL%Z] defined in Eq. (53) satisfies the condition

AEzZ,Z Vi-Vp e R VYV, (55)

then the approximate problem (54) has a unique solutin, @;,) that satisfies the energy conservatiti, (z)|| =
WL(O)], Vz.Theclassicalschemesa (= 1) satisfy condition (55), for any medium. The modified schemes satisfy
(55) in a homogeneous medium

There is a technical difficulty for proving the stability of the modified schemes in heterogeneous media [20].
However, numerical experiments show that the modified schemes are stable, even in heterogeneous media.

3.4. Algorithm

LetU;" be the approximate solution of the 3-D Eq. (17), at sigpThe algorithm to compute the solutinm‘j,’“rl
is summarized as follows. Introdu@é, + 1 intermediate unknownSW’"’/')j:o,_,, Np» wherew™.0 = U is the
initialization (hereNp = 4). For each direction ¥ j < Np, on each mesh-line in this direction<ll/; < L; (see
Fig. 3), W™/ is determined a®"™/ = W}"(Az) Wherer’." is the solution of the 2D paraxial equation on this line

dwm .
L=ic]"wn, 0<s <Az, W (0) = w1, (56)
ds J J
with /" = M (?MEZ" — a; k1#")~1p; k2" (with the modified schemes). The matrices depené:oon j
and on the ling;. In particular, in a diagonal direction, the size of the matrices is different on each line. Note that
the step-size also depends on the direction. To solve Eq. (56), we follow Section 3.2: intkbduténtermediary
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unknown vector$VT/]’.”)k,k:0,_,,K, where(vffjm)o =wmJi-landfork =1,...,K, (VT/]’.")k is solution of the linear
system
Si T (Wi = 8T (WM a (57)

with S,'(”’j = (a)zathl;[ZH] — K,[,Z”])(Mh)*1 + rrwAzbja; K}[f”]. The last step gives ug™/ = (W}")K. Finally the
solution atz”+* is given byu;" ™ = w-No.

4. Dispersion analysis

We only consider the modified schemes of orde#2 obtained with the particular choice@f= «!?"]. A scheme
obtained using a classical @rder discretization in and a K order discretization ip will be called 2ix¢jass— 2K z
scheme. A scheme obtained using a modified&ler discretization in and a X order discretization in will be
called Zixmoq — 2K z sScheme.

The dispersion analysis consists in analyzing the propagation of plane waves in a homogeneousuediues,
exp{—i(kyx + k,z)} with k = (ky, k,). For the harmonic wave equation, the dispersion relatika'iskf = w?/c?,
which is equivalent ta p2)"V&¢ = p2/(1 — p2), if we setpa = ck,/w = tand, and pe = k,/k, = tande. The
dispersion relation for the 4%araxial equation igck, /)" = 1 — bp2 /(1 — ap2) = pa/p&™.

We make a similar plane wave analysis for the schemes by looking for solutions on thﬁff@fmxp{—i (ky jAX+
k.mAz)}, but this timepd"™, not only depends op, but also onw; this is the numerical dispersion. The weaker
this dependence, the better the scheme. To evaluate the quality of the scheme, we define the dispersion error
E = |9S°" — 60UM|. This quantity depends on the ratig = Az/Ax and the numbe6 = 2rc/(wAx) of dis-
cretization points per wavelength in the propagation anglgs < 1, and the coefficientg andb of the paraxial
approximation. The dispersion error permits us to make comparisons between several schemes. We restrict the
analysis toa = 1/4,b = 1/2, p5 = tan(32°) andr,, = 1 (otherwise mentioned), so that becomes only a
function of H = 1/G. We have compared th@nx — 2K z) classical and modified schemes f6r= 1, 2 and
n =1, 2, 3and we give some conclusions of these comparisons (see [20] for more details). The comparison between
modified and classical schemes shows that, for a given order of accuracy, the less expensive modified schemes have
the unexpected property to be always less dispersive than the classical ones. We illustrate this in Fig. 4(a) for the
fourth-order schemes inand second-order in Since higher-order schemes are more expensive, one can ask if, to
achieve greater accuracy, it would be better to refine the mesh. Fig. 4(b) shows that even if we divide the step size
by 4, the second-ordexdiscretization is more dispersive than the fourth-order one, so that it is better to increase
the order of the scheme than to refine the mesh. The last comparison between schganes4 and 6cmoq — 22,
in Fig. 4(c), shows that, although theandx directions play different roles in the equations, it is better to take the
same order for both discretizations, at least for sufficiently fine meshes (more than 2.5 points per wavelength).

(a) 08

(b) 02

(c) 08

4x_{class}-2z 6x_{mod}-2z , Dz=Dx/4 — 4x_{mod}-4z —

0.7 4x_{mod}-2z 6x_{mod) 4z, , Dz= Dx 1 07 6x_(mod)-2z
06 0.15 06
05 05
w04 w 01 w04
03 03
0.2 0.05 0.2
01 / 0.1
0 0 0

0 0.050.10.150.2 0.25 03 0.35 0.4 0.45 0.5 0 0.050.1 0.15 02 0.25 0.3 0.35 0.4 045 0.5 0 0.050.10.150.20.25 0.3 0.35 0.4 0.45 0.5
H H H

Fig. 4. Behavior of the dispersion error with respect to the inverse of number of points per wavelength: (a) Modified and Classical schemes
(fourth-order inx and second-order ip); (b) 6xmog — 2z With r;, = 1/4 and G&moed — 4z With r;, = 1; (C) 4xmod — 4z and 6cmod — 2z.
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velocity model
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1857 -2000
1714 -1857
1571 -1714
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B
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Fig. 5. 2-D smooth heterogeneous medium: level lines of the velocity.

5. Numerical experiments

We illustrate the method by several experiments in the time domain, for which we specify the surface data
vo(x, ), solve the problem for each frequency, recover the transient result through a Fourier transform, and indicate
the cutoff frequency;. The computational domain is 1250 m long in each horizontal direction and 625 m in the
vertical direction. The grid sizes alte= Az = 12.5 m. We handle 120 equidistributed frequencies. We represent the
solution at timeT,ps, Wwhen the wave reaches 80% of the total depth (i.e., 500 m). For each of the experiments, the use
of higher-order schemes provides satisfactory results even for a small number of discretization points per wavelength.

5.1. Filtered point source in a 2-D heterogeneous medium

The initial condition at = 0 is a filtered point sourceH; ; is the(x, r) Fourier transform)

d? 1 d? _1{2sin(w|x — xs|/c)
vo(x, 1) = @(&us s (x — XS)(;';)-}},, Lyeky <o) = @(gws(l))(f)f, ( X — 5] ) )

whereg, (1) = exp(—w_%t2/4).The filtering process eliminates the evanescent modes present in the wave equation.
The simulation is performed in the smoothly varying velocity medium shown in Fig. 5. The central frequency of
the source iF's = 27 ¢c/ws = 28 Hz and the cutoff frequency ix- = 76 Hz. The mesh contains about 3 points per

(@) (b) (©)

(d) (e)

Fig. 6. 2-D smooth heterogeneous medium. Snapshdfspat= 0.34s. (a) 2class— 27; (b) 4xmod — 4z; (C) 6xmod — 4z; (d) Dirichlet BC,
4xmod — 4z; (€) PLMS of 5Ax, 4xmod — 42.
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(a) (b) (c)
Fig. 7. 3-D homogeneous medium. Snapshotggt= 375m andlops = 0.51s. (a) 2¢lass— 22; (b) 4xmod — 2z; (C) Bxmod — 42.

Slice of the 3D velocity model

I A~BOVE 3000
Bl 2786 -3000
Bl 5712786
Bl 23572571
B 21432357
[  1929-2143
] 1714-1929

[ 1 1500-1714

] BeLOW 1500

Fig. 8. An(x, z) slice of a 3-D smooth heterogeneous medium; level lines of the velocity.

wavelength foiFs. The results in Fig. 6 represent the solution at tifpg = 0.34 s. In the first experiment, the point

source is located in the center of the domain. Figs. 6(a)—(c) show that the modified schemes give very good results,
in heterogeneous media, and a very good improvement concerning the dispersion, compared to the second-order
scheme. The second experiment is devoted to testing the PML absorbing boundaries described in Section 2.2. We

I ABOVE
0.001 -
0.001 -
0.000- 0.
-0.000- 0.
-0.001 - -0.
-0.001 -
-0.002 -

BELOW

JOCOENEN

(b) ()

(d) (e)

Fig. 9. 3-D heterogeneous medium. Sections of snapsh@tgat 0.254 s. (a)zops = 20, 4xmod — 2z (Claerbout) with PMLs of 6Ax; (b)
Zobs = 20, 4tmod — 2z With Dirichlet BC; (C) zobs = 20, Btmog — 4z with PMLs of 6 Ax; (d) zobs = 30, 4tmod — 2z With PMLs of 6 Ax; (e)
Zobs = 30, 4xmog — 2z with Dirichlet BC.
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shift the location of the source close to the left boundary of the domain and present the results obtained with scheme
4xmod — 4z. The strong reflection obtained with a Dirichlet boundary condition shown in Fig. 6 (d) has completely
disappeared with an absorbing layer of depthshown in Fig. 6(e). This illustrates the capacity of the PML in
heterogeneous media. The extra cost due to the PML is negligible as the layer represents 5% of the total length.

5.2. Filtered point source in a 3-D homogeneous medium

This simulation is performed in a 3-D homogeneous medium with 1000 nys. We consider a filtered point
source. The difference from the 2-D case comes from the inverse Fourier tranﬁgﬂ;@(l‘ckkwp(xl, x2) =
lw|/|2mcx|J1(Jwx]|/c), whereJ; denotes the Bessel function. The central frequency of the souge4s 20 Hz
and the cutoff frequency isc = 50Hz. The number of points per wavelength is about 4Fgralong thex;
direction, but only 3 along the diagonal. Fig. 7 shows sections of the solution at a fixed:gigpth375m observed
at time Tops = 0.51s. Note the quite good isotropy despite the introduction of particular directions used for the
splitting.

5.3. Filtered point source in a 3-D heterogeneous medium

The last simulation is performed in a smooth varying velocity medium. A slice of this medium appeatrs in Fig.
8. The number of points per wavelength for the central frequency is about 5 indhrection and 3.5 along the
diagonal. In Fig. 9, we represent the sections of the solution atfyme= 0.254 s for two fixed depthepps = 20 in
(a)—(c) anczops = 30 in (d) and (e)). The improvement on the dispersion using a higher-order scheme is still very
good in this heterogeneous medium (compare Fig. 7(a) and (c)). The PML technique is also used here. Although
the extra cost is a bit higher and the absorption with only six layers is not as accurate as in 2-D, the results compared
to the Dirichlet BC are still quite good (compare Fig. 7(a) and (khgt= 20 and Fig. 7(d) and (e) atps = 30).
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