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Abstract

Numerical schemes for solving 3-D paraxial equations are constructed using splitting techniques. The solution can be
reduced to a series of 2-D paraxial equations in each direction of splitting. The discretization along the depth is based on
higher-order conservative schemes. The discretization along the transverse variables is based on higher-order finite difference
variational schemes. Numerical experiments illustrate the advantages of higher-order schemes, which are much less dispersive,
even for a small number of discretization points per wavelength. ©2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Paraxial approximations of the wave equation are commonly used when waves propagate in directions close
to a preferred direction, which plays the role of an evolution variable. The operator in the Helmholtz equation is
expressed as the product of two one-way operators that involve the square root of an operator. The nonlocal operator
square root is then approximated to obtain a local parabolic partial differential equation. Accuracy depends on the
magnitude of the error in the approximation; wider propagation angles are permitted with better approximations.
Several approximations have been designed, such as the 15, 45, and 60◦ approximations [1]. One of the main
applications of paraxial approximations is to range-dependent ocean acoustic propagation problems, where the
range is the evolution variable. Tappert’s parabolic equation was the first paraxial approximation applied to ocean
acoustics [2]. Numerous subsequent contributions have been made in this area [3]. In this paper, we apply paraxial
approximations to 3-D migration problems in geophysics, in whichz is the evolution variable. For this application,
Claerbout was the first to introduce 15 and 45◦ equations for the extrapolation of 2-D seismic data [4,5].

The discretization of the paraxial wave equation involves two kinds of variables, the depth variablez and the
transverse variablesx1 for 2-D problems and(x1, x2) for 3-D problems. One approach for solving paraxial wave
equations is based on the use of discrete extrapolation operators [6]. Another approach is based on approximating
derivatives with finite differences or finite elements. Paraxial wave equations are commonly used for solving 2-D
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problems [7]. Their extension to 3-D problems requires the solution at each extrapolation step of a 2-D problem in
the transverse plane, which gives rise to a large linear system that can be solved using iterative methods [8,9].

To avoid solving a transverse 2-D problem, Collino and Joly have constructed new families of paraxial approxi-
mations that are compatible with splitting methods [1]. In contrast to classical alternating direction methods [10,11],
this approach introduces directions for the splitting other than the usual cross-line and in-line directions. This allows
one to obtain 45 and 60◦ approximations that do not contain the undesirable anisotropic effects that arise in Brown’s
approximation [10]. The problem is then reduced to a series of 2-D extrapolations in each direction. Recently and
independently of this work, Ristow and Ruhl used the same idea of operator splitting in alternate directions [12].

In this paper, we describe a systematic way of obtaining accurate discretizations, both in the depth and in the
transverse variables, for solving the 3-D paraxial equations introduced in [1] with splitting methods. It is well known
that lower order numerical schemes can give rise to numerical dispersion (see [13] for the classical discretization of
2-D paraxial equations). Since dispersion is even more important in 3-D problems, we have developed higher-order
numerical schemes that attenuate these effects. We construct our schemes in general heterogeneous media, study
their accuracy via a dispersion analysis, and compare them with numerical experiments.

The paper is organized as follows. Section 2 is devoted to the continuous equations. In Section 2.1, we discuss
some properties of the classical paraxial approximations. In Section 2.2, we describe the paraxial approximations
introduced in [1], which are compatible with four directions of splitting. Section 3 concerns the discretization
of a model 2-D equation. Higher-order discretizations in the depth variable are presented in Section 3.2. The
discretization in the transverse variable with variational finite differences techniques is presented in Section 3.3. We
compare the dispersion of several particular schemes in Section 4. We present numerical experiments in Section 5.

2. Multiway splitting for 3-D paraxial equations

2.1. The classical paraxial equations

The solution of the wave equation in the whole homogeneous space,
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with appropriate boundary and initial conditions, can be split into an up-going wave and a down-going wave. We
are interested in the up-going wave, which satisfies the one-way wave equation,

dv̂
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c
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)1/2

v̂ = 0, (2)

for z ≥ 0, wherek = (k1, k2), |k|2 = k2
1 + k2

2, andv̂ is the Fourier transform ofv with respect to both time and the
transverse directions,

v̂(k1, k2, z, ω) =
∫ ∫ ∫

v(x1, x2, z, t) ei(k1x1+k2x2−ωt) dx1 dx2 dt. (3)

A paraxial equation is an approximation of Eq. (2) that is obtained by replacing the exact square root(1−|κ|2)1/2

with a rational approximation that we denote by(1 − |κ|2)1/2
ap , whereκ = (κ1, κ2), κ1 = ck1/ω, andκ2 = ck2/ω.

With this approach, a nonlocal equation is approximated by a partial differential equation.
The rational approximation is designed to be valid whenc|k|/ω is sufficiently small (i.e., for propagation directions

close to thez-direction). We define the error,

e(κ) = |(1 − |κ|2)1/2 − (1 − |κ|2)1/2
ap |. (4)
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Fig. 1. The errore(κ) of two classical approximations, with respect toκ1 andκ2. (a) 15◦ approximation, (b) 45◦ approximation.

The 15◦ paraxial equation is based on the linear Taylor expansion,

(1 − |κ|2)1/2 = 1 − 1
2|κ|2 + O(|κ|4). (5)

The 45◦ paraxial equation is based on the Padé approximation,

(1 − |κ|2)1/2 = 1 − 3
4|κ|2

1 − 1
4|κ|2 + O(|κ|6). (6)

The accuracy of these two classical approximations is illustrated in Fig. 1, which represents the variations of
the errore(κ1, κ2) with respect toκ1 andκ2 as follows: the larger the white region(e(κ) ≤ 10−3) the better the
approximation. Transforming the 15◦ approximation to physical space and usingv to denote the frequency domain
solution, we obtain

∂v

∂z
+ iω

c
v + ic

2ω
1v = 0, (7)

where1 = ∂2
1 + ∂2

2 is the 2-D Laplacian and∂j ≡ ∂/∂xj . We handle the second term exactly with the change of
variableu = veiωz/c and obtain the 15◦ paraxial equation,

∂u

∂z
+ ic

2ω
1u = 0. (8)

Since1 is a sum of 1-D operators, Eq. (8) can be solved with the splitting method [14], which is useful for
solving evolution equations involving a sum ofNs operators of the form,

∂u

∂z
(xxx, z) − i

Ns∑
j=1

Aj(z)u(xxx, z) = 0, z ≥ 0, xxx = (x1, x2) ∈ R2, u(z = 0) = u0 inR2. (9)

Knowingu(z0), splitting methods involve computingu(z0 + 1z) in an approximate way. This leads us to define
Ns intermediate unknownswj , j = 1, . . . , Ns satisfying

∂wj

∂s
(xxx, s) − iAj(z0 + s)wj (xxx, s) = 0, 0 ≤ s ≤ 1z, xxx ∈ R2,

wj (s = 0) =
{

u(z0), for j = 1, inR2

wj−1(1z), for j > 1, inR2 (10)

and to setu(z0 + 1z) = wNs (1z). Problem (10) is still an evolution problem inz but with a single operator.
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Fig. 2. The errore(κ) of splitting approximations that correspond to (a) two directions (Brown’s approximation) and (b) four directions (the
Maxi-isotropic approximation,b1 = 0.25).

It is straightforward to apply this technique to Eq. (8) withAj = −c/2ω∂j andNs = 2. This case involves the
solution of 1-D problems in thex1 andx2 directions. On the other hand, the splitting method is not efficient when
applied directly to the 45◦ paraxial equation,

∂u

∂z
− iAu = 0, (11)

A = − ω

2c

(
ω2

c2
+ 1

4
1

)−1

1. (12)

Indeed, there is no decomposition ofA into a sum of simple 1-D operators that is consistent with the 45◦
approximation order. The classical way to approximate Eq. (11), posed in a bounded domain and subject to boundary
conditions, is to discretize1 on a uniform grid. This leads to a large, sparse system of equations that can be solved
using iterative methods [9]. To avoid this inefficient approach, Brown [10] has suggested the approximation,

(1 − |κ2|)1/2 = 1 −
1
2κ2

1

1 − 1
4κ2

1

−
1
2κ2

2

1 − 1
4κ2

2

+ O(κ2
1κ2

2), (13)

which has been used by other authors [11]. The accuracy of this approximation is highly anisotropic. The error is
consistent with the 45◦ equation(e(κ) = O(|κ|6)) in theκ1 = 0 andκ2 = 0 directions. In other directions, the
approximation is only slightly better than the 15◦ approximation, as one can see by comparing Figs. 1 and 2.

2.2. The four-way splitting equations

The basic idea developed in [1] is to achieve greater accuracy for approximations involving only one transverse
space variable per fraction by introducing more than two directions of splitting. The simplest family of paraxial
equations is based on the four directions of splitting,x1, x1 + x2, x1 − x2, x2, and the rational approximation,

(1 − |κ2|)1/2 ∼= 1 − R(κ), (14)

R(κ) =
4∑

j=1

bj (κ · nj )
2

1 − aj (κ · nj )2
, (15)

wherenj = (cosαj , sinαj ) is the unit vector associated with thej th directionαj = (j − 1)π/2. The conditions
aj > 0 andbj ≥ 0 must be satisfied to ensure well-posedness. To prevent the approximation error in the square
root from blowing-up in certain directions inside the unit disk|κ| ≤ 1, it is necessary to require 0< aj ≤ 1.
Approximations consistent with the 45◦ approximation (i.e., such that e(κ) = O(|κ|6)) correspond to a system
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satisfied by the coefficientsaj andbj . This leads to a family of 45◦ approximations depending on one parameter
b1 that has to be chosen in the interval [1/12, 5/12] in order to ensure the conditions 0< aj ≤ 1 andbj ≥ 0:

b4 = b1, b2 = b3 = 1 − 2b1

2
, a1 = a4 = 1

12b1
, a2 = a3 = 1

12b2
. (16)

Criteria based on the errore(κ) are proposed for the choice ofb1 in [1]. In Fig. 2, we present the error of the
so-called maxi-isotropic 45◦ approximation, which corresponds tob1 = 1

4. In contrast to Brown’s approximation,
the quality of this approximation is comparable to the classical 45◦ approximation not only in theκ1 andκ2 directions
but also in all other directions. The paraxial equation corresponding to Eq. (14) is

∂u

∂z
− i

ω

c

4∑
j=1

Aju = 0, (17)

Aj = −bj

(
ω2

c2
+ ajD

2
j

)−1

D2
j , (18)

whereDj = nj · (∂1, ∂2) is the directional derivative. Since eachAj is a 1-D operator, this family of equations
lends itself to a splitting method in the horizontal variables.

It was shown in [1] how to design other families of paraxial approximations of a given order of accuracy,
introducing either more than four directions for the splitting or more than one fraction per direction. We consider
approximations based on four splitting directions, which are relatively easy to implement on regular grids. This is not
a significant restriction because four directions are sufficient to achieve accurate solutions (e.g., 60◦ approximations)
by increasing the number of fractions per direction.

Paraxial equations in heterogeneous media were proposed and analyzed in [15]. These equations are based on
defining several criteria, both mathematical and physical in nature, and selecting from a general class of possible
candidates the one that satisfies these criteria. This approach can be used to extend any paraxial equation to hetero-
geneous media. Using this approach to generalize Eqs. (17) and (18), we define the new variableũ = u/c1/2 and
obtain

Aj = −bj (ω
2 + aj1

c
j )

−11c
j , (19)

where1c
j = (cDj )

2 and c depends on(x1, x2, z). Paraxial equations have also been developed for problems
involving variations in density and other parameters [16,17].

For the numerical computation, the problem is defined in the cylindrical domainD × {z ≥ 0}. WhenD is
unbounded, it is necessary to introduce artificial transverse boundaries, designed such that the waves are absorbed
when they reach the boundaries. The concept of a perfectly matched layer (PML), which was originally introduced
for Maxwell’s equations [18], has been adapted to paraxial equations [19]. This approach is based on replacing1c

j

with

1̃c
j = (cdj (x1, x2)Dj )

2, (20)

dj (x1, x2) = iω

iω + cσj (x1, x2)
, (21)

where the dampingσj > 0 has support in a damped region that surrounds the region of interest in the(x1, x2)

plane and is only a function of the space coordinate corresponding to directions parallel to vectornj . An approach
for constructingσj is given in [20]. It can be shown by a plane wave analysis that the PML model possesses the
remarkable property of generating no reflection at the interface between the region of interest and the artificial lossy
medium. Furthermore, waves are exponentially damped in the absorbing layer.
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Fig. 3. Computational grid for the 45◦ approximation with four directions of splitting.

3. Higher-order schemes for the four-way splitting equations

The approximation of the 3-D paraxial equation involves three steps. We first reduce the problem to a series
of 2-D paraxial equations using splitting techniques so that it is sufficient to know how to discretize a 2-D model
equation. In the second step, we discretize with finite differences inz. In the third step, we discretize along the
transverse variable with variational finite differences.

3.1. Reduction to a series of 2-D paraxial equations

Applying the splitting technique to the 3-D paraxial Eq. (17) with Dirichlet boundary conditions, we obtain a
series of 2-D paraxial equations. More precisely, the knowledge ofu(z0 + 1z) from u(z0) consists in solving
ND = 4 problems as in Eq. (10). In a heterogeneous medium, it can be rewritten using the auxiliary unknowns
ϕj (xxx, s) = Aj(xxx, z0 + s)wj (xxx, s), 1 ≤ j ≤ ND as

∂wj

∂s
(xxx, s) − i

ω

c
ϕj (xxx, s) = 0, xxx = (x1, x2) ∈ D, 0 ≤ s ≤ 1z,

ω2

c
ϕj + Dj(cDj (ajϕj + bjwj )) = 0, (xxx, s) ∈ D × [0, 1z],

wj (s = 0) =
{

u(z0) for j = 1,

wj−1(1z) for 2 ≤ j ≤ ND
(22)

and we obtainu(z0 + 1z) = wND
(1z). We letGj be a grid composed on lines parallel to directionj as show in

Fig. 3. The problem defined in Eq. (22) can be decomposed as several problems, posed on each line independently.
On one particular lineΩ, the problem can be written as Eq. (22), with the exception thatx varies only onΩ. This
equation is simply a 2-D paraxial equation.

Without loss of generality, we focus on a particular directionx, takeΩ = (−L, L), and solve the 2-D paraxial
equation,

∂w

∂z
− iω

c
ϕ = 0 inΩ × [0, Z],

ω2

c
ϕ + ∂

∂x

(
c

∂

∂x
(aϕ + bw)

)
= 0 inΩ × [0, Z],

w(z = 0) = w0 in Ω,

w ≡ ϕ ≡ 0 on∂Ω × [0, Z],

(23)

wherea > 0 andb ≥ 0 andw is related to the 2-D wave fieldv via the change of unknownw = ei(ω/c)zv . To
obtain a variational formulation of Eq. (23), we introduce the notations,
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(u, v)0,Ω =
∫

Ω

uv̄ dx, ‖u‖0,Ω = (u, u)
1/2
0,Ω, |φ|1,Ω =

(∫
Ω

∣∣∣∣∂φ

∂x

∣∣∣∣
2
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)1/2

,

H = L2(Ω) =
{
u,

∫
Ω

|u|2 dx < ∞
}

, V = H 1
0 (Ω) =

{
u ∈ H,

du

dx
∈ H, u = 0 on∂Ω

}
,

m(u, v) =
∫

Ω

1

c
uv̄ dx, ∀(u, v) ∈ H, k(u, v) =

∫
Ω

c
∂u

∂x

∂v̄

∂x
dx, ∀(u, v) ∈ V, (24)

wherem(., .) andk(., .) are the mass and stiffness bilinear forms. Letw0 be inV . The variational formulation of
Eq. (23) consists in finding(w, ϕ) : [0, Z] → V × V such that

d

dz
(w, χ) − iωm(ϕ, χ) = 0 ∀χ ∈ V,

ω2m(ϕ, χ) − k(aϕ + bw, χ) = 0 ∀χ ∈ V,

w(z = 0) = w0.

(25)

We recall the classicalL2-stability result that any solution(w, ϕ) to Eq. (25) satisfies the energy conservation
condition,‖w(z)‖0,Ω = ‖w0‖0,Ω, ∀z [8].

3.2. Semi-discretization in depth

We assume thatc(x1, x2, z) = cm(x1, x2) for z ∈ [zm, zm+1]. In each interval [zm, zm+1], Eq. (23) is rewritten as

dw

dz
= iCmw, zm ≤ z ≤ zm+1, w(zm) = wm, (26)

whereCm = −ω/cm(ω2 + a1c
m)−1b1c

m and1c
m = cm∂/∂x(cm∂/∂x). In order to obtain conservative schemes,

we use the discretization in depth proposed in [8]. This approach is based on the expression of the exact solution of
(26),w(zm+1) = eiCm1zw(zm) and the Padé approximant of the exponential,

K∏
k=1

1 + rkx

1 + r̄kx
= NK(x)

NK(x)
with rk such that eix = NK(x)

NK(x)
+ O(|x|2K), (27)

whereNK(x) = ∏K
k=1(1 + rkx). The integration fromzm to zm+1 is then formally done as follows:wm+1 =∏K

k=1(I + r̄k1zCm)−1(I + rk1zCm)wm. This procedure leads us to defineK + 1 intermediate unknowns

wm
0 = wm, (I + r̄k1zCm)wm

k = (I + rk1zCm)wm
k−1, 1 ≤ k ≤ K. (28)

We then setwm+1 = wm
K . The Crank–Nicolson second-order scheme is obtained for the caseK = 1 andr1 = i/2.

3.3. Discretization in the transverse variable with higher-order variational finite difference schemes

The discretization inx of Eq. (23) is based on the variational formulation (25), which provides a systematic
treatment of heterogeneous media and insures stability based on energy estimates. The usual approach is to apply
standard Galerkin finite elementsPk [21], but this would yield several drawbacks, especially in view of the use of the
splitting method to get the 3-D solution, see [20]. One difficulty is related to the fact that, for higher-orderPk finite
elements (k ≥ 2), there are additional degrees of freedom between two mesh points. Since these new degrees of
freedom do not coincide in each direction of splitting, the evaluation of the solution at these points would require the
use of interpolation procedures. Another difficulty is related to the approach for introducing the so-called modified
schemes, which are essentially based on the use of an approximate mass matrix. With a finite element approach,
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this could still be done using a mass-lumping technique, but this is not always possible with the classical degrees of
freedom [22]. We prefer to use a variational finite difference approach. The proofs are omitted but can be found in [20].

3.3.1. Presentation of the discretization
We discretize the domain with a regular gridxi = ih and define the shifted grid by the nodesxi+1/2 = (i+1/2)h.

We look for an approximate solution of Eq. (25),(wh, ϕh) : [0, Z] → (Hh)
2, where

Hh = {vh ∈ L2(Ω); vh/[xi−1/2,xi+1/2] ∈ P 0, vh(x0) = vh(xN+1) = 0}, (29)

is a finite dimensional space which is only included inL2(Ω) and not inV (P 0 is the space of constant functions).
Therefore,k(., .) needs to be approximated by a bilinear formkh(., .) defined onHh (see below), and we have to solve

d

dz
(wh, χh) − iωm(ϕh, χh) = 0 ∀χh ∈ Hh,

ω2m(ϕh, χh) − kh(aϕh + bwh, χh) = 0 ∀χh ∈ Hh.

(30)

Let (χi)i=1,... ,N be the basis ofHh defined such thatχi(xj ) = δij /
√

h for 1 ≤ i, j ≤ N and(χi, χj )0 = δij .
The approximate solution is decomposed aswh(x, z) = ∑N

i=1Wi(z)χi(x), ϕh(x, z) = ∑N
i=1Φi(z)χi(x) and

Eq. (30) is equivalent to find the vector functions(Wh, Φh) satisfying

dWh

dz
− iωMhΦh = 0, (ω2Mh − aKh)Φh = bKhWh, (31)

whereMh is a diagonal definite positive matrix, called the mass matrix,(Mh)ij = m(χi, χj ), Kh is the stiffness
matrix,(Kh)ij = kh(χi, χj ), andkh will be defined below.

3.3.2. Definition of the approximate stiffness bilinear formkh

To derive an approximate stiffness bilinear form, the derivative∂/∂x is approximated with a finite difference
operator defined onHh. Let Dε denote the usual second-order finite differenceDεφ(x) ≡ φ(x + ε) − φ(x − ε),
andD∗

ε its adjoint, defined asD∗
ε = −Dε. Forφ ∈ Hh, andε = h/2, we defineDh/2φ(x) = φ(xi) − φ(xi−1), for

x ∈ [xi−1, xi ], so that

Dh/2φ ∈ H
1/2
h = {vh ∈ L2(Ω) such thatvh/[xi−1,xi ] ∈ P 0, ∀1 ≤ i ≤ N + 1}.

More generally, if we consider the finite difference operatorD(2p−1)h/2, we haveD(2p−1)h/2φ ∈ H
1/2
h , whereφ

is extended to zero outsideΩ. We introduce some real numbersνp and set

∂h = 1

h

n∑
p=1

νpD(2p−1)h/2. (32)

In particular we have∂hφ(xj+1/2) = ∑n
p=1νp(φ(xj+p) − φ(xj−p+1))/h, and ifφ ∈ Hh, then∂hφ is in H

1/2
h .

We have the following lemma [20].

Lemma 3.1. The approximation (32) is of order2n – i.e., for any regularρ, ∂hρ(x) = dρ(x)/dx + O(h2n), ∀x –
provided that coefficientsνp satisfy

n∑
p=1

νp(2p − 1)2k−1 = δk1 for 1 ≤ k ≤ n. (33)

In that case it is denoted by∂ [2n]
h and for any regular functionρ we have
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∂
[2n]
h ρ(x) = dρ

dx
(x) + h2nR

[2n]
S ρ(2n+1)(x) + O(h2n+2),

R
[2n]
S =

∑n
p=1νp(2p−1)2n+1

(2n+1)!22n .

(34)

System (33) has a unique solution given explicitly in Eqs. (45) and (47). We now define the approximate stiffness
bilinear form and stiffness matrix,

k
[2n]
h (φ, χ) = (c∂

[2n]
h φ, ∂

[2n]
h χ) ∀(φ, χ) ∈ H 2

h ,

(Kh)
[2n]
ij = k

[2n]
h (χi, χj ).

(35)

3.3.3. The classical schemes
With the above definitions, we define the second-order classical scheme as

dWh

dz
− iωMhΦh = 0, (36)

(ω2Mh − aK
[2n]
h )Φh = bK

[2n]
h Wh. (37)

After elimination of the auxiliary unknown, we get the evolution system

(ω2Mh − aK
[2n]
h )M−1

h

dWh

dz
= iωbK

[2n]
h Wh. (38)

This requires the inversion ofMh, which is easy sinceMh is diagonal. This property is important to keep in mind
when constructing the new modified schemes.

We now analyze the order of the scheme in a homogeneous medium. Eq. (36) can then be rewritten in the form,
for all j ,

dwh

dz
(xj , z) − iω

c
ϕh(xj , z) = 0,

ω2

c
ϕh(xj , z) −

∑
i

(K
[2n]
h )ji(aϕh(xi, z) + bwh(xi, z)) = 0. (39)

To analyze this approximation, we choose as a criterion of quality the truncation error that quantifies the order
at which the exact solution(w, ϕ) of Eq. (23) satisfies the scheme. The first equation is obviously satisfied by the
exact solution. The error therefore comes from the second equation,

Eclass
h = ω2

c
ϕ(xj , z) −

∑
i

(K
[2n]
h )ji(aϕ(xi, z) + bw(xi, z)). (40)

Lemma 3.2. The scheme (36) is of order2n. The first term of the truncation error is of the form,

Eclass
h = 2cR

[2n]
S h2n ∂2n+2(aϕ + bw)

∂x2n+2
(xj , z) + O(h2n+2), (41)

whereR
[2n]
S defined in Eq. (34).

3.3.4. The modified schemes
The idea of the modified schemes is to approximateMh in the first term of Eq. (38) with a matrixM [2n]

h,α that
provides improved accuracy while preserving the bandwidth of the system to maintain the same computational cost.
This corresponds to modifying the mass matrix only in Eq. (37) to obtain

dWh

dz
− iωMhΦh = 0, (ω2M

[2n]
h,α − aK

[2n]
h )Φh = bK

[2n]
h Wh. (42)
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The mass matrix is defined as(Mh)ij = (1/cχi, χj )0. We introduce the approximation,Iεφ(x) = (φ(x + ε) +
φ(x−ε))/2(I ∗

ε = Iε) of the identity operatorI . Forφ ∈ Hh andε = (2p−1)h/2, we obtainIεφ ∈ H
1/2
h . We define

Ih =
n∑

p=1

µpI(2p−1)h/2, whereµp are real numbers. (43)

Lemma 3.3. The approximation (43) is of order2n – i.e.,Ihρ(x) = ρ(x)+O(h2n), ∀x , for any regular function
ρ – if coefficientsµp are the unique solutions of the Vandermonde system

n∑
p=1

µp(2p − 1)2(k−1) = δk1 for 1 ≤ k ≤ n, (44)

given by

µp =
∏

m6=p(2m − 1)2∏
m6=p((2m − 1)2 − (2p − 1)2)

. (45)

In this case, it is denotedI [2n]
h and for any regular functionρ we have

I [2n]
h ρ(x) = ρ(x) + h2nR

[2n]
M ρ(2n)(x) + O(h2n+2),

R
[2n]
M =

∑n
p=1µp(2p−1)2n

(2n)!22n .
(46)

Lemma 3.4. The coefficientsνp andµp satisfy the relation

µp = (2p − 1)νp, 1 ≤ p ≤ n. (47)

We can now construct an approximate symmetric and positive mass matrix

(M[2n]
h )ij =

(
1

c
I [2n]

h χi, I
[2n]
h χj

)
0
. (48)

Remark 3.1. For the same value of n, the approximationsI [2n]
h χi and∂

[2n]
h χi use the values of the function at the

same points. The matricesM[2n]
h andK

[2n]
h therefore have the same bandwidth.

The idea is now to introduce the convex combination of both mass matrices (which remains positive definite and
thus invertible),

M
[2n]
h,α = αMh + (1 − α)M[2n]

h , 0 ≤ α ≤ 1, (49)

and to look for a particular value ofα in order to gain accuracy relative to the classical discretization, which
corresponds toα = 1. From Remark 3.1, we see thatω2M

[2n]
h,α − aK

[2n]
h has the same bandwidth as the classical

scheme. To analyze the order of this scheme, we write it in a homogeneous medium as

dwh

dz
(xj , z) − iω

c
ϕh(xj , z) = 0, ω2

∑
i

(M
[2n]
h,α )jiϕh(xi, z) −

∑
i

(K
[2n]
h )ji(aϕh + bwh)(xi, z) = 0, (50)

and the truncation error still comes from the second equation

Emod
h = ω2

∑
i

(M
[2n]
h,α )jiϕ(xi, z) −

∑
i

(K
[2n]
h )ji(aϕ + bw)(xi, z), (51)

where(w, ϕ) is the exact solution of Eq. (23), assumed regular enough.
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Proposition 3.1. The modified scheme (42), with the matrixM
[2n]
h,α defined in (49) is of order2n+2 in a homogeneous

medium with the choice

α = α[2n] = 2n

2n + 1
. (52)

We can easily relate modified schemes to Claerbout’s scheme. Actually, the classical Claerbout’s scheme [5] is
usually seen as a modification of the stiffness matrix in Eq. (31). The second-order approximationK

[2]
h is replaced

by (I − γ h2K
[2]
h )−1K

[2]
h which is still of second-order and becomes fourth-order with the valueγ = 1/12. In the

modified schemes, the modification plays on the mass matrix, but it can also be interpreted as a modification on
the stiffness matrix by rewriting the modified mass matrix asM

[2n]
h,α = (I + (1 − α)(M[2n]

h − Mh)M
−1
h )Mh, and

multiplying the second equation by(I + (1− α)(M[2n]
h − Mh)M

−1
h )−1 in order to reobtainMh for the mass term.

The stiffness matrix is then modified and becomes

A
[2n]
h,α = (I + (1 − α)(M[2n]

h − Mh)M
−1
h )−1K

[2n]
h . (53)

The modified scheme can then be rewritten as follows:

dWh

dz
− iωMhΦh = 0, ω2MhΦh − A

[2n]
h,α (aΦh + bWh) = 0. (54)

Forn = 1, the fourth-order modified scheme is equivalent to Claerbout’s scheme with the relationγ = (1−α)/4.
The higher-order modified schemes can thus be interpreted as an extension to higher-orders of Claerbout’s scheme.

3.3.5. Stability analysis
It is convenient to analyze the well-posedness of the schemes written in the form in Eq. (54) (rather than Eq.

(42)), which is very close to the continuous equations.

Proposition 3.2. If the matrixA
[2n]
h,α defined in Eq. (53) satisfies the condition

A
[2n]
h,α Vh · Vh ∈ R ∀Vh, (55)

then the approximate problem (54) has a unique solution(Wh, Φh) that satisfies the energy conservation:‖Wh(z)‖ =
‖Wh(0)‖, ∀z. The classical schemes (α = 1 ) satisfy condition (55), for any medium. The modified schemes satisfy
(55) in a homogeneous medium.

There is a technical difficulty for proving the stability of the modified schemes in heterogeneous media [20].
However, numerical experiments show that the modified schemes are stable, even in heterogeneous media.

3.4. Algorithm

Let Um
h be the approximate solution of the 3-D Eq. (17), at stepzm. The algorithm to compute the solutionUm+1

h

is summarized as follows. IntroduceND + 1 intermediate unknowns,(Wm,j )j=0,... ,ND
, whereWm,0 = Um

h is the
initialization (hereND = 4). For each direction 1≤ j ≤ ND, on each mesh-line in this direction, 1≤ lj ≤ Lj (see
Fig. 3),Wm,j is determined asWm,j = Wm

j (1z) whereWm
j is the solution of the 2D paraxial equation on this line

dWm
j

ds
= iCj,m

h Wm
j , 0 ≤ s ≤ 1z, Wm

j (0) = Wm,j−1, (56)

with C
j,m
h = ωMh(ω

2M
[2n]
α − ajK

[2n]
h )−1bjK

[2n]
h (with the modified schemes). The matrices depend onm, on j

and on the linelj . In particular, in a diagonal direction, the size of the matrices is different on each line. Note that
the step-size also depends on the direction. To solve Eq. (56), we follow Section 3.2: introduceK + 1 intermediary



112 E. Bécache et al. / Wave Motion 31 (2000) 101–116

unknown vectors(W̃m
j )k, k=0,... ,K , where(W̃m

j )0 = Wm,j−1 and fork = 1, . . . , K, (W̃m
j )k is solution of the linear

system

S
m,j
k (W̃m

j )k = S̄
m,j
k (W̃m

j )k−1 (57)

with S
m,j
k = (ω2ajM

[2n]
α − K

[2n]
h )(Mh)

−1 + r̄kω1zbjajK
[2n]
h . The last step gives usWm,j ≡ (W̃m

j )K . Finally the

solution atzm+1 is given byUm+1
h = Wm,ND .

4. Dispersion analysis

We only consider the modified schemes of order 2n+2 obtained with the particular choice ofα = α[2n] . A scheme
obtained using a classical 2n order discretization inx and a 2K order discretization inz will be called 2nxclass−2Kz

scheme. A scheme obtained using a modified 2n order discretization inx and a 2K order discretization inz will be
called 2nxmod − 2Kz scheme.

The dispersion analysis consists in analyzing the propagation of plane waves in a homogeneous medium,v(x, z) =
exp{−i(kxx + kzz)} with k = (kx, kz). For the harmonic wave equation, the dispersion relation isk2

x + k2
z = ω2/c2,

which is equivalent to(p2
e)

wave = p2
a/(1 − p2

a), if we setpa = ckx/ω = tanθa andpe = kx/kz = tanθe. The
dispersion relation for the 45◦ paraxial equation is(ckz/ω)cont = 1 − bp2

a/(1 − ap2
a) = pa/p

cont
e .

We make a similar plane wave analysis for the schemes by looking for solutions on the formvm
j = exp{−i(kxj1x+

kzm1z)}, but this timepnum
e , not only depends onpa but also onω; this is the numerical dispersion. The weaker

this dependence, the better the scheme. To evaluate the quality of the scheme, we define the dispersion error
E = |θcont

e − θnum
e |. This quantity depends on the ratiorzx = 1z/1x and the numberG = 2πc/(ω1x) of dis-

cretization points per wavelength inx, the propagation anglepa < 1, and the coefficientsa andb of the paraxial
approximation. The dispersion error permits us to make comparisons between several schemes. We restrict the
analysis toa = 1/4, b = 1/2, pa = tan(32◦) and rzx = 1 (otherwise mentioned), so thatE becomes only a
function of H = 1/G. We have compared the(2nx − 2Kz) classical and modified schemes forK = 1, 2 and
n = 1, 2, 3 and we give some conclusions of these comparisons (see [20] for more details). The comparison between
modified and classical schemes shows that, for a given order of accuracy, the less expensive modified schemes have
the unexpected property to be always less dispersive than the classical ones. We illustrate this in Fig. 4(a) for the
fourth-order schemes inx and second-order inz. Since higher-order schemes are more expensive, one can ask if, to
achieve greater accuracy, it would be better to refine the mesh. Fig. 4(b) shows that even if we divide the step size
by 4, the second-orderz-discretization is more dispersive than the fourth-order one, so that it is better to increase
the order of the scheme than to refine the mesh. The last comparison between schemes 4xmod− 4z and 6xmod− 2z,
in Fig. 4(c), shows that, although thez andx directions play different roles in the equations, it is better to take the
same order for both discretizations, at least for sufficiently fine meshes (more than 2.5 points per wavelength).

Fig. 4. Behavior of the dispersion error with respect to the inverse of number of points per wavelength: (a) Modified and Classical schemes
(fourth-order inx and second-order inz); (b) 6xmod − 2z with rzx = 1/4 and 6xmod − 4z with rzx = 1; (c) 4xmod − 4z and 6xmod − 2z.
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Fig. 5. 2-D smooth heterogeneous medium: level lines of the velocity.

5. Numerical experiments

We illustrate the method by several experiments in the time domain, for which we specify the surface data
v0(x, t), solve the problem for each frequency, recover the transient result through a Fourier transform, and indicate
the cutoff frequencyFc. The computational domain is 1250 m long in each horizontal direction and 625 m in the
vertical direction. The grid sizes areh = 1z = 12.5 m. We handle 120 equidistributed frequencies. We represent the
solution at timeTobs, when the wave reaches 80% of the total depth (i.e., 500 m). For each of the experiments, the use
of higher-order schemes provides satisfactory results even for a small number of discretization points per wavelength.

5.1. Filtered point source in a 2-D heterogeneous medium

The initial condition atz = 0 is a filtered point source (Fx,t is the(x, t) Fourier transform)

v0(x, t) = d2

dt2
(gωS

(t))δ(x − xS) ∗
(x,t)
F−1

x,t (1|ckx |<|ω|) ≡ d2

dt2
(gωS

(t)) ∗
(t)
F−1

t

(
2 sin(ω|x − xS |/c)

|x − xS |
)

,

wheregωS
(t) = exp(−ω2

St2/4).The filtering process eliminates the evanescent modes present in the wave equation.
The simulation is performed in the smoothly varying velocity medium shown in Fig. 5. The central frequency of
the source isFS = 2πc/ωS = 28 Hz and the cutoff frequency isFC = 76 Hz. The mesh contains about 3 points per

Fig. 6. 2-D smooth heterogeneous medium. Snapshots atTobs = 0.34 s. (a) 2xclass− 2z; (b) 4xmod − 4z; (c) 6xmod − 4z; (d) Dirichlet BC,
4xmod − 4z; (e) PLMS of 51x, 4xmod − 4z.
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Fig. 7. 3-D homogeneous medium. Snapshots atzobs = 375 m andTobs = 0.51 s. (a) 2xclass− 2z; (b) 4xmod − 2z; (c) 6xmod − 4z.

Fig. 8. An(x, z) slice of a 3-D smooth heterogeneous medium; level lines of the velocity.

wavelength forFS. The results in Fig. 6 represent the solution at timeTobs = 0.34 s. In the first experiment, the point
source is located in the center of the domain. Figs. 6(a)–(c) show that the modified schemes give very good results,
in heterogeneous media, and a very good improvement concerning the dispersion, compared to the second-order
scheme. The second experiment is devoted to testing the PML absorbing boundaries described in Section 2.2. We

Fig. 9. 3-D heterogeneous medium. Sections of snapshots atTobs = 0.254 s. (a)zobs = 20, 4xmod − 2z (Claerbout) with PMLs of 61x; (b)
zobs = 20, 4xmod − 2z with Dirichlet BC; (c)zobs = 20, 6xmod − 4z with PMLs of 61x; (d) zobs = 30, 4xmod − 2z with PMLs of 61x; (e)
zobs = 30, 4xmod − 2z with Dirichlet BC.
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shift the location of the source close to the left boundary of the domain and present the results obtained with scheme
4xmod− 4z. The strong reflection obtained with a Dirichlet boundary condition shown in Fig. 6 (d) has completely
disappeared with an absorbing layer of depth 5h shown in Fig. 6(e). This illustrates the capacity of the PML in
heterogeneous media. The extra cost due to the PML is negligible as the layer represents 5% of the total length.

5.2. Filtered point source in a 3-D homogeneous medium

This simulation is performed in a 3-D homogeneous medium withc = 1000 m/s. We consider a filtered point
source. The difference from the 2-D case comes from the inverse Fourier transform,F−1

x1,x2
(1|ck|<|ω|)(x1, x2) =

|ω|/|2πcx|J1(|ωx|/c), whereJ1 denotes the Bessel function. The central frequency of the source isFS = 20 Hz
and the cutoff frequency isFC = 50 Hz. The number of points per wavelength is about 4 forFS along thex1
direction, but only 3 along the diagonal. Fig. 7 shows sections of the solution at a fixed depthzobs = 375m observed
at timeTobs = 0.51 s. Note the quite good isotropy despite the introduction of particular directions used for the
splitting.

5.3. Filtered point source in a 3-D heterogeneous medium

The last simulation is performed in a smooth varying velocity medium. A slice of this medium appears in Fig.
8. The number of points per wavelength for the central frequency is about 5 in thex direction and 3.5 along the
diagonal. In Fig. 9, we represent the sections of the solution at timeTobs = 0.254 s for two fixed depth (zobs = 20 in
(a)–(c) andzobs = 30 in (d) and (e)). The improvement on the dispersion using a higher-order scheme is still very
good in this heterogeneous medium (compare Fig. 7(a) and (c)). The PML technique is also used here. Although
the extra cost is a bit higher and the absorption with only six layers is not as accurate as in 2-D, the results compared
to the Dirichlet BC are still quite good (compare Fig. 7(a) and (b) atzobs = 20 and Fig. 7(d) and (e) atzobs = 30).
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