Revealing guided modes in a plasmonic waveguide using PMLs at corners

Camille Carvalho1
A.S. Bonnet-Ben Dhia1, L. Chesnel2, P. Ciarlet Jr.1

1POEMS, UMR 7231 CNRS-INRIA-ENSTA, Palaiseau, France
2Department of Mathematics and Systems Analysis, Aalto University, Finland

KOZWaves 2014, 18th February
Guided modes in a plasmonic waveguide (1)

Previously in Anne-Sophie Bonnet-Ben Dhia’s talk

2D Scattering problem
Artificial Boundary Condition
Black-hole waves captured by Perfectly Matched Layers

Dielectric Ω_1 $\epsilon_1 > 0$

Metal Ω_2 $\epsilon_2 < 0$

Metal permittivity modelized by the dissipationless Drude’s model

$$\epsilon(\omega) = \epsilon_\infty \left(1 - \frac{\omega_p^2}{\omega^2}\right)$$
Guided modes in a plasmonic waveguide (1)

Previously in Anne-Sophie Bonnet-Ben Dhia’s talk

In this presentation

2D Scattering problem
Artificial Boundary Condition
Black-hole waves captured by Perfectly Matched Layers
Previously in Anne-Sophie Bonnet-Ben Dhia’s talk

2D Scattering problem
Artificial Boundary Condition
Black-hole waves captured by Perfectly Matched Layers
Guided modes in a plasmonic waveguide (1)

Previously in Anne-Sophie Bonnet-Ben Dhia’s talk

2D Scattering problem

Artificial Boundary Condition

Black-hole waves captured by Perfectly Matched Layers

In this presentation

Bounded section

Looking for propagative waves along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$
Guided modes in a plasmonic waveguide (1)

Previously in Anne-Sophie Bonnet-Ben Dhia’s talk

2D Scattering problem
Artificial Boundary Condition
Black-hole waves captured by Perfectly Matched Layers

In this presentation

Bounded section
Looking for propagative waves along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$
Guided modes in a plasmonic waveguide (1)

Previously in Anne-Sophie Bonnet-Ben Dhia’s talk

Dielectric $\epsilon_1 > 0$
Metal $\epsilon_2 < 0$

2D Scattering problem
Artificial Boundary Condition
Black-hole waves captured by Perfectly Matched Layers

In this presentation

Dielectric $\epsilon_1 > 0$
Metal $\epsilon_2 < 0$

Bounded section
Looking for propagative waves along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$

2D Eigenproblem
Looking for the guided modes
Looking for the waves propagating along z

$$u(x, y, z, t) = \widetilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$
Looking for the waves propagating along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)
Guided modes in a plasmonic waveguide

Looking for the waves propagating along z

$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)

$\text{div} \left(\frac{1}{\varepsilon} \nabla \tilde{u} \right) - \frac{\beta^2}{\varepsilon} \tilde{u} + \omega^2 \mu \tilde{u} = 0 \quad \Omega \quad \mu > 0$

$\tilde{u} = 0 \quad \partial \Omega$
Looking for the waves propagating along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)

$$\text{div} \left(\frac{1}{\varepsilon} \nabla \tilde{u} \right) - \frac{\beta^2}{\varepsilon} \tilde{u} + \omega^2 \mu \tilde{u} = 0 \quad \Omega \quad \mu > 0$$

$$\tilde{u} = 0 \quad \partial \Omega$$
Looking for the waves propagating along z

$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)

$$\text{div} \left(\frac{1}{\epsilon} \nabla \tilde{u} \right) - \frac{\beta^2}{\epsilon} \tilde{u} + \omega^2 \mu \tilde{u} = 0 \quad \Omega \quad \mu > 0$$

$$\tilde{u} = 0 \quad \partial \Omega$$

Two ways to study the problem

- for a chosen frequency ω, find the axial eigenvalues $A(\omega)\tilde{u} = \frac{\beta^2}{\epsilon} \tilde{u}$
Guided modes in a plasmonic waveguide (2)

Looking for the waves propagating along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)

$$\text{div} \left(\frac{1}{\epsilon} \nabla \tilde{u} \right) - \frac{\beta^2}{\epsilon} \tilde{u} + \omega^2 \mu \tilde{u} = 0 \quad \Omega \quad \mu > 0$$

$$\tilde{u} = 0 \quad \partial \Omega$$

Two ways to study the problem

- for a chosen frequency ω, find the axial eigenvalues $A(\omega)\tilde{u} = \frac{\beta^2}{\epsilon} \tilde{u}$

- for a chosen axial wavenumber β, find the cavity resonances $A(\beta)\tilde{u} = \omega^2 \tilde{u}$
Guided modes in a plasmonic waveguide (2)

Looking for the waves propagating along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)

$$\text{div} \left(\frac{1}{\epsilon} \nabla \tilde{u} \right) - \frac{\beta^2}{\epsilon} \tilde{u} + \omega^2 \mu \tilde{u} = 0 \quad \Omega \quad \mu > 0$$

$$\tilde{u} = 0 \quad \partial \Omega$$

Two ways to study the problem

- for a chosen frequency ω, find the axial eigenvalues $A(\omega)\tilde{u} = \frac{\beta^2}{\epsilon} \tilde{u}$

- for a chosen axial wavenumber β, find the cavity resonances $A(\beta)\tilde{u} = \omega^2 \tilde{u}$
Guided modes in a plasmonic waveguide (2)

Looking for the waves propagating along z

$$u(x, y, z, t) = \tilde{u}(x, y)e^{i(\beta z - \omega t)} \quad \beta, \omega \in \mathbb{R}$$

We consider the time-harmonic scalar model of Maxwell’s equations (simplified model)

$$\text{div} \left(\frac{1}{\varepsilon} \nabla \tilde{u} \right) - \frac{\beta^2}{\varepsilon} \tilde{u} + \omega^2 \mu \tilde{u} = 0 \quad \Omega \quad \mu > 0$$

$$\tilde{u} = 0 \quad \partial \Omega$$

Two ways to study the problem

- for a chosen frequency ω, find the axial eigenvalues $A(\omega)\tilde{u} = \frac{\beta^2}{\varepsilon} \tilde{u}$

- for a chosen axial wavenumber β, find the cavity resonances $A(\beta)\tilde{u} = \omega^2 \tilde{u}$

Formulation of the eigenvalue problem:

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}, \omega \in \mathbb{C}$ s.t.

$$-\frac{1}{\mu} \text{div} \left(\frac{1}{\varepsilon} \nabla \tilde{u} \right) + \frac{\beta^2}{\mu \varepsilon} \tilde{u} = \omega^2 \tilde{u} \quad V_0 = \{ u/ \int_{\Omega} |u|^2 + |\nabla u|^2 d\Omega < +\infty, u|_{\partial \Omega} = 0 \}$$
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1 \quad \epsilon_2 = -\frac{10}{7} \quad \beta = 1$
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$A(\beta)\tilde{u} = \omega^2\tilde{u}$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1 \quad \epsilon_2 = -\frac{10}{7} \quad \beta = 1$

Coarse mesh
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$A(\beta)\tilde{u} = \omega^2 \tilde{u}$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

Coarse mesh

Fine mesh

![Graph showing Im(ω^2) and Re(ω^2)]
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FE Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

Coarse mesh

Fine mesh
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$A(\beta)\tilde{u} = \omega^2 \tilde{u}$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

Coarse mesh

Fine mesh

For a coarse mesh
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1$, $\epsilon_2 = -\frac{10}{7}$, $\beta = 1$

Coarse mesh
Fine mesh

For a coarse mesh
No convergence due to black-hole waves

For a fine mesh
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

Coarse mesh

Fine mesh

For a coarse mesh

For a fine mesh

No convergence due to black-hole waves
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

Coarse mesh

Fine mesh

For a coarse mesh

For a fine mesh

No convergence due to black-hole waves

For a coarse mesh

For a fine mesh

Revealing guided modes in a plasmonic waveguide using Perfectly Matched Layers at the corners, CARVALHO Camille, KOZWaves, February 2014
Some numerical experiments (1)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$A(\beta)\tilde{u} = \omega^2 \tilde{u}$

Numerical illustrations with FE

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

Coarse mesh

Fine mesh

For a coarse mesh

Fine mesh

No FEM convergence but some modes seem stable: guided modes are hidden in this spectrum!
Some numerical experiments (2)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FEM

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

New numerical method involving PMLs: the method is stable, sorts the modes and reveals the guided modes
Some numerical experiments (2)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FEM
Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

New numerical method involving PMLs: the method is stable, sorts the modes and reveals the guided modes

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FEM
Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$
Some numerical experiments (2)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}$, $\omega \in \mathbb{C}$ s.t.

$$A(\beta)\tilde{u} = \omega^2 \tilde{u}$$

Numerical illustrations with FEM

Parameters $\epsilon_1 = 1$, $\epsilon_2 = -\frac{10}{7}$, $\beta = 1$

New numerical method involving PMLs: the method is stable, sorts the modes and reveals the guided modes

$\omega^2 \in \mathbb{R}$

guided/evanescent modes
Some numerical experiments (2)

For $\beta \in \mathbb{R}$, Find $\tilde{u} \in V_0 \setminus \{0\}, \omega \in \mathbb{C}$ s.t.

$A(\beta)\tilde{u} = \omega^2 \tilde{u}$

Numerical illustrations with FEM

Parameters $\epsilon_1 = 1$ $\epsilon_2 = -\frac{10}{7}$ $\beta = 1$

New numerical method involving PMLs: the method is stable, sorts the modes and reveals the guided modes.

$\omega^2 \in \mathbb{R}$ guided/evanescent modes

$\omega^2 \in \mathbb{C} \setminus \mathbb{R}$ leaky modes?
* Introduction

* **Properties of the operator**

* Link between leakage and black-hole waves

* Numerical results
First steps: when $\epsilon > 0$

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \overline{v} = \omega^2 \int_{\Omega} \mu u \overline{v} \quad \forall \, v \in V_0$$
First steps: when $\epsilon > 0$

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \bar{v} = \omega^2 \int_{\Omega} \mu u \bar{v} \quad \forall v \in V_0$$

Good Properties: $A(\beta)$ is self-adjoint and has compact resolvent
First steps: when $\epsilon > 0$

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u\overline{v} = \omega^2 \int_{\Omega} \mu u\overline{v} \quad \forall \ v \in V_0$$

Good Properties: $A(\beta)$ is self-adjoint and has compact resolvent

The spectrum of $A(\beta)$ is a sequence of positive real eigenvalues

Good Properties $\Rightarrow (\omega_n(\beta))_{n \in \mathbb{N}}$ with finite multiplicity, tending to $+\infty$

Approximation with Finite Elements converges (no spurious modes)

First steps: when $\epsilon > 0$

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} uv = \omega^2 \int_{\Omega} \mu uv \quad \forall v \in V_0$$

Good Properties: $A(\beta)$ is self-adjoint and has compact resolvent

The spectrum of $A(\beta)$ is a sequence of positive real eigenvalues

Good Properties $\Rightarrow (\omega_n(\beta))_{n\in\mathbb{N}}$ with finite multiplicity, tending to $+\infty$

Approximation with Finite Elements converges (no spurious modes)

Dispersion curve (for the 10 first ev.)

$\epsilon_1 = 1$, $\epsilon_2 = 2$

\[\omega^2 = \frac{\beta^2}{\epsilon_2 \mu}\]
First steps: when $\epsilon > 0$

Variational formulation:

$$A(\beta) u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u v = \omega^2 \int_{\Omega} \mu u v \quad \forall v \in V_0$$

Good Properties: $A(\beta)$ is self-adjoint and has compact resolvent

- The spectrum of $A(\beta)$ is a sequence of positive real eigenvalues
- Good Properties $\implies (\omega_n(\beta))_{n \in \mathbb{N}}$ with finite multiplicity, tending to $+\infty$

Approximation with Finite Elements converges (no spurious modes)

Do $A(\beta)$'s Good Properties remain when ϵ is sign-changing?

What impact have the corners?

Revealing guided modes in a plasmonic waveguide using Perfectly Matched Layers at the corners, CARVALHO Camille, KOZWaves, February 2014
Properties of $A(\beta)$ when ϵ changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \bar{v} = \omega^2 \int_{\Omega} \mu u \bar{v} \quad \forall v \in V_0$$
Properties of $A(\beta)$ when ε changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\varepsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\varepsilon} u v = \omega^2 \int_{\Omega} \mu u v \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?
Properties of $A(\beta)$ when ε changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\varepsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\varepsilon} u \overline{v} = \omega^2 \int_{\Omega} \mu u \overline{v} \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?
YES under some conditions on ε and the geometry
Properties of $A(\beta)$ when ϵ changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \overline{v} = \omega^2 \int_{\Omega} \mu u \overline{v} \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?

YES under some conditions on ϵ and the geometry

In our case: YES iff $\kappa_\epsilon = \frac{\epsilon_1}{\epsilon_2} \not\in I_c \subset \mathbb{R}^-$ Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

T-coercivity for scalar interface problems between dielectrics and metamaterials,
Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Properties of $A(\beta)$ when ε changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\varepsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\varepsilon} u \overline{v} = \omega^2 \int_{\Omega} \mu u \overline{v} \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?

YES under some conditions on ε and the geometry

In our case: YES iff $\kappa_\varepsilon = \frac{\varepsilon_1}{\varepsilon_2} \not\in I_c \subset \mathbb{R}^-$ Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

T-coercivity for scalar interface problems between dielectrics and metamaterials,
Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Properties of $A(\beta)$ when ϵ changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_\Omega \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_\Omega \frac{\beta^2}{\epsilon} u \overline{v} = \omega^2 \int_\Omega \mu u \overline{v} \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?

YES under some conditions on ϵ and the geometry

In our case: YES iff $\kappa_\epsilon = \frac{\epsilon_1}{\epsilon_2} \notin I_c \subset \mathbb{R}^-$ Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

Outside I_c

Inside I_c

T-coercivity for scalar interface problems between dielectrics and metamaterials,

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Properties of $A(\beta)$ when ϵ changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \bar{v} = \omega^2 \int_{\Omega} \mu u \bar{v} \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?

YES under some conditions on ϵ and the geometry

In our case: YES iff $\kappa_\epsilon = \frac{\epsilon_1}{\epsilon_2} \not\in I_c \subset \mathbb{R}^-$ Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

<table>
<thead>
<tr>
<th>Outside I_c</th>
<th>$A(\beta)$ has the Good Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real discrete spectrum tending to $\pm \infty$</td>
</tr>
<tr>
<td></td>
<td>FEM converges (under some condition on the mesh)</td>
</tr>
</tbody>
</table>

Inside I_c

* * *

T-coercivity for scalar interface problems between dielectrics and metamaterials,
Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Properties of $A(\beta)$ when ϵ changes sign

For a metal:

$$A(\beta) u = \int_\Omega \mu \tilde{u} \tilde{v} \quad \forall \tilde{v} \in V_0$$

Do $A(\beta)$ have Good Properties?

YES under some conditions on ϵ and the geometry

In our case

T-coercivity for scalar interface problems between dielectrics and metamaterials,
Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
For a metamaterial: is sign changing?

Variational formulation:

\[A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \bar{v} = \omega^2 \int_{\Omega} \mu u \bar{v} \quad \forall v \in V_0 \]

Does \(A(\beta) \) have Good Properties?

YES under some conditions on \(\epsilon \) and the geometry

In our case: YES iff \(\kappa_\epsilon = \frac{\epsilon_1}{\epsilon_2} \notin I_c \subset \mathbb{R}^- \) Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

Outside \(I_c \)

\(A(\beta) \) has the Good Properties

Real discrete spectrum tending to \(\pm \infty \)

FEM converges (under some condition on the mesh)

Inside \(I_c \)

\(T \)-coercivity for scalar interface problems between dielectrics and metamaterials,
Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Properties of $A(\beta)$ when ϵ changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_\Omega \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_\Omega \frac{\beta^2}{\epsilon} u \overline{v} = \omega^2 \int_\Omega \mu u \overline{v} \quad \forall \, v \in V_0$$

Does $A(\beta)$ have Good Properties?

YES under some conditions on ϵ and the geometry

In our case: YES iff $\kappa_{\epsilon} = \frac{\epsilon_1}{\epsilon_2} \notin I_c \subset \mathbb{R}^-$ Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

Outside I_c

$A(\beta)$ has the Good Properties

Real discrete spectrum tending to $\pm \infty$

FEM converges (under some condition on the mesh)

Inside I_c

$A(\beta)$ has the Good Properties

No FEM convergence due to black-hole waves

T-coercivity for scalar interface problems between dielectrics and metamaterials, Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Properties of $A(\beta)$ when ϵ changes sign

Variational formulation:

$$A(\beta)u = \omega^2 u \iff \int_{\Omega} \frac{1}{\epsilon} \nabla u \cdot \nabla v + \int_{\Omega} \frac{\beta^2}{\epsilon} u \overline{v} = \omega^2 \int_{\Omega} \mu u \overline{v} \quad \forall v \in V_0$$

Does $A(\beta)$ have Good Properties?

YES under some conditions on ϵ and the geometry

In our case: YES iff $\kappa_\epsilon = \frac{\epsilon_1}{\epsilon_2} \notin I_c \subset \mathbb{R}^-$ Critical interval

(cf. Anne-Sophie Bonnet-Ben Dhia’s talk)

Outside I_c

(Good case)

$A(\beta)$ has the Good Properties

Real discrete spectrum tending to $\pm \infty$

FEM converges (under some condition on the mesh)

Inside I_c

(Bad case)

$A(\beta)$ has the Good Properties

No FEM convergence due to black-hole waves

T-coercivity for scalar interface problems between dielectrics and metamaterials,

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet, M2AN, 2012
Introduction

Properties of the operator

Link between leakage and black-hole waves

Numerical results
Energy conservation with one corner (1)

In the **Bad case**, V_0 is **not** the adapted mathematical framework to find the modes. **Need to take into account the black-hole wave** $s^+ \notin V_0$

$$u = u_{\text{reg}} + c^+ s^+$$
In the Bad case, V_0 is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave $s^+ \not\in V_0$.

\[u = u_{\text{reg}} + c^+ s^+ \]

\[-\text{div} \left(\frac{1}{\epsilon} \nabla u \right) + \frac{\beta^2}{\epsilon} u = \omega^2 \mu u \quad \Omega/B_{\rho} \]

\[u = 0 \quad \partial \Omega \]

\[\beta \in \mathbb{R} \]
Energy conservation with one corner (1)

In the **Bad case**, V_0 is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave $s^+ \notin V_0$

$$u = u_{\text{reg}} + c^+ s^+$$

$$-\text{div} \left(\frac{1}{\varepsilon} \nabla u \right) + \frac{\beta^2}{\varepsilon} u = \omega^2 \mu u \quad \Omega / B_\rho$$

$$u = 0 \quad \partial \Omega$$

By the energy technique, and taking the imaginary part

$$-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\varepsilon} |\phi(\theta)|^2 \, d\theta \sim \Im(\omega^2) \int_\Omega \mu |u|^2 \, d\Omega$$
Energy conservation with one corner (1)

In the **Bad case**, V_0 is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave $s^+ \not\in V_0$

$$u = u_{\text{reg}} + c^+ s^+$$

$$-\text{div} \left(\frac{1}{\epsilon} \nabla u \right) + \frac{\beta^2}{\epsilon} u = \omega^2 \mu u \quad \Omega/B_\rho$$

$$u = 0 \quad \partial\Omega$$

By the energy technique, and taking the imaginary part

$$-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\epsilon} |\phi(\theta)|^2 \, d\theta \sim \Im(\omega^2) \int_{\Omega} \mu |u|^2 \, d\Omega$$

$$\geq 0 \quad \geq 0$$
Energy conservation with one corner (1)

In the **Bad case**, V_0 is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave $s^+ \notin V_0$

$$u = u_{\text{reg}} + c^+ s^+$$

$$-\text{div} \left(\frac{1}{\epsilon} \nabla u \right) + \frac{\beta^2}{\epsilon} u = \omega^2 \mu u \quad \Omega/B_\rho$$

$$u = 0 \quad \partial\Omega$$

By the energy technique, and taking the imaginary part

$$-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\epsilon} |\phi(\theta)|^2 d\theta \sim \Re(\omega^2) \int_\Omega \mu |u|^2 d\Omega$$

$$\omega^2 \in \mathbb{R} \implies c^+ = 0 \text{ then } u = u_{\text{reg}} \in V_0 \text{ The real eigenvalues do not excite } s^+$$
Energy conservation with one corner (1)

In the **Bad case**, \(V_0 \) is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave \(s^+ \not\in V_0 \)

\[
\begin{align*}
 u &= u_{\text{reg}} + c^+ s^+ \\
 -\text{div} \left(\frac{1}{\varepsilon} \nabla u \right) + \frac{\beta^2}{\varepsilon} u &= \omega^2 \mu u & \Omega / B_\rho \\
 u &= 0 & \partial \Omega \\
 \beta &\in \mathbb{R}
\end{align*}
\]

By the energy technique, and taking the imaginary part

\[
-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\varepsilon} |\phi(\theta)|^2 \, d\theta \sim \mathbb{R}(\omega^2) \int_{\Omega} \mu |u|^2 \, d\Omega
\]

\(\omega^2 \in \mathbb{R} \implies c^+ = 0 \) then \(u = u_{\text{reg}} \in V_0 \) The **real** eigenvalues do not excite \(s^+ \)

\(\omega^2 \in \mathbb{C} \setminus \mathbb{R} \implies \mathbb{R}(\omega^2) \leq 0 \) The **complex** eigenvalues excite the black-hole wave and are located in the same complex half-plane
Energy conservation with one corner (1)

In the Bad case, \(V_0 \) is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave \(s^+ \not\in V_0 \)

\[
u = u_{\text{reg}} + c^+ s^+
\]

\[
-\text{div} \left(\frac{1}{\varepsilon} \nabla u \right) + \frac{\beta^2}{\varepsilon} u = \omega^2 \mu u \quad \Omega/B_\rho
\]

\[
u = 0 \quad \partial\Omega
\]

By the energy technique, and taking the imaginary part

\[
-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\varepsilon} |\phi(\theta)|^2 d\theta \sim \Re(\omega^2) \int_\Omega \mu |u|^2 d\Omega
\]

\[
\omega^2 \in \mathbb{R} \implies c^+ = 0 \text{ then } u = u_{\text{reg}} \in V_0 \text{ The real eigenvalues do not excite } s^+
\]

\[
\omega^2 \in \mathbb{C} \setminus \mathbb{R} \implies \Re(\omega^2) \leq 0 \text{ The complex eigenvalues excite the black-hole wave and are located in the same complex half-plane}
\]

\[
u(x, y)e^{i(\beta z - \omega t)}
\]

The energy is decaying in time because of leakage at the corners (leaky modes appear for open waveguides)
Energy conservation with one corner (1)

In the Bad case, V_0 is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave $s^+ \notin V_0$

$$u = u_{reg} + c^+ s^+$$

$$-\text{div} \left(\frac{1}{\varepsilon} \nabla u \right) + \frac{\beta^2}{\varepsilon} u = \omega^2 \mu u \quad \Omega / B_\rho \quad \beta \in \mathbb{R}$$

$$u = 0 \quad \partial \Omega$$

By the energy technique, and taking the imaginary part

$$-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\varepsilon} |\phi(\theta)|^2 \, d\theta \sim \Re(\omega^2) \int_{\Omega} \mu |u|^2 \, d\Omega$$

$\omega^2 \in \mathbb{R} \implies c^+ = 0$ then $u = u_{reg} \in V_0$ The real eigenvalues do not excite s^+

$\omega^2 \in \mathbb{C} \setminus \mathbb{R} \implies \Re(\omega^2) \leq 0$ The complex eigenvalues excite the black-hole wave and are located in the same complex half-plane

$u(x, y) e^{i(\beta z - \omega t)}$ The energy is decaying in time because of leakage at the corners (leaky modes appear for open waveguides)

Need to take s^+ into account to compute the regular cavity modes \textit{i.e.} the guided/evanescent modes. \textbf{Plus it sorts} all the modes!!
In the **Bad case**, V_0 is not the adapted mathematical framework to find the modes. Need to take into account the black-hole wave $s^+ \not\in V_0$

$$u = u_{\text{reg}} + c^+ s^+$$

By the energy technique, and taking the imaginary part

$$-\text{div} \left(\frac{1}{\varepsilon} \nabla u \right) + \frac{\beta^2}{\varepsilon} u = \omega^2 \mu u \quad \Omega / B_\rho \quad \beta \in \mathbb{R}$$

$$u = 0 \quad \partial \Omega$$

$$-|c^+|^2 \kappa \int_{\theta=0}^{2\pi} \frac{1}{\varepsilon} |\phi(\theta)|^2 d\theta \sim \mathfrak{R}(\omega^2) \int_{\Omega} \mu |u|^2 d\Omega$$

$$\omega^2 \in \mathbb{R} \implies c^+ = 0 \text{ then } u = u_{\text{reg}} \in V_0 \text{ The real eigenvalues do not excite } s^+$$

$$\omega^2 \in \mathbb{C} \setminus \mathbb{R} \implies \mathfrak{R}(\omega^2) \leq 0 \text{ The complex eigenvalues excite the black-hole wave and are located in the same complex half-plane}$$

$$u(x, y) e^{i(\beta z - \omega t)}$$

The energy is **decaying** in time because of leakage at the corners (leaky modes appear for open waveguides)

Need to take s^+ into account to compute the regular cavity modes i.e. the guided/evanescent modes. Plus it sorts all the modes !!

There is an efficient numerical method to capture s^+: using PMLs
Outline

- Introduction
- Properties of the operator
- Link between leakage and black-hole waves
- Numerical results
Numerical illustrations

P2 Finite Elements $\epsilon_1 = 1, \epsilon_2 = -7/10, \beta = 1$
Numerical illustrations

P2 Finite Elements $\epsilon_1 = 1$, $\epsilon_2 = -7/10$, $\beta = 1$ Animation in time $e^{-i\omega_j(\beta)t}$
Numerical illustrations

P2 Finite Elements $\epsilon_1 = 1$, $\epsilon_2 = -7/10$, $\beta = 1$
Animation in time $e^{-i \omega_j(\beta) t}$

$\omega^2 \in \mathbb{R}^+$
Guided modes

Ω_1
Ω_2

x
$\partial \Omega$
y

Revealing guided modes in a plasmonic waveguide using Perfectly Matched Layers at the corners, CARVALHO Camille, KOZWaves, February 2014
Numerical illustrations

P2 Finite Elements \(\epsilon_1 = 1, \epsilon_2 = -7/10, \beta = 1 \) Animation in time \(e^{-i \omega_j(\beta)t} \)

\(\omega^2 \in \mathbb{R}^- \)
Evanescent modes

\(\omega^2 \in \mathbb{R}^+ \)
Guided modes

Revealing guided modes in a plasmonic waveguide using Perfectly Matched Layers at the corners, CARVALHO Camille, KOZWaves, february 2014
Numerical illustrations

P2 Finite Elements \(\varepsilon_1 = 1, \varepsilon_2 = -7/10, \beta = 1 \) Animation in time \(e^{-i \omega_j(\beta) t} \)

\(\omega^2 \in \mathbb{R}^- \) Evanescent modes

\(\omega^2 \in \mathbb{R}^+ \) Guided modes
Numerical illustrations

P2 Finite Elements $\epsilon_1 = 1$, $\epsilon_2 = -7/10$, $\beta = 1$ Animation in time $e^{-i \omega_j(\beta) t}$

$\omega^2 \in \mathbb{R}^-$ Evanescent modes

$\omega^2 \in \mathbb{R}^+$ Guided modes

$\omega^2 \in \mathbb{C} \setminus \mathbb{R}$ Leaky modes
Numerical illustrations

Ω_1 Ω_2

P2 Finite Elements $\epsilon_1 = 1$, $\epsilon_2 = -7/10$, $\beta = 1$ Animation in time $e^{-i \omega_j(\beta) t}$

$\omega^2 \in \mathbb{R}^-$

Evanescent modes

$\omega^2 \in \mathbb{R}^+$

Guided modes

The Energy conservation gives us:

$u = u_{reg} + c_{Top} s^{+}_{Top} + c_{Left} s^{+}_{Left} + c_{Right} s^{+}_{Right}$

$\mathcal{E}_{Top} + \mathcal{E}_{Left} + \mathcal{E}_{Right} \sim \Im(\omega^2) \int_{\Omega} \mu |u|^2 d\Omega$

$\omega^2 \in \mathbb{C} \setminus \mathbb{R}$ Leaky modes

Revealing guided modes in a plasmonic waveguide using Perfectly Matched Layers at the corners, CARVALHO Camille, KOZWaves, February 2014
Numerical illustrations

P2 Finite Elements \(\epsilon_1 = 1, \epsilon_2 = -7/10, \beta = 1 \) Animation in time \(e^{-i \omega_j(\beta) t} \)

\(\omega^2 \in \mathbb{R}^- \)
Evanescent modes

\(\omega^2 \in \mathbb{R}^+ \)
Guided modes

The Energy conservation gives us:
\[
u = u_{\text{reg}} + c_{\text{Top}} s_{\text{Top}}^+ + c_{\text{Left}} s_{\text{Left}}^+ + c_{\text{Right}} s_{\text{Right}}^+
\]
\[
\mathcal{E}_{\text{Top}} + \mathcal{E}_{\text{Left}} + \mathcal{E}_{\text{Right}} \sim \Im(\omega^2) \int_{\Omega} \mu |u|^2 d\Omega
\]

\(\mathcal{E}_{\text{Top}} = 0 \)

\(\mathcal{E}_{\text{Left}} = \mathcal{E}_{\text{Right}} = 0 \)

\(\omega^2 \in \mathbb{C} \setminus \mathbb{R} \) Leaky modes

Revealing guided modes in a plasmonic waveguide using Perfectly Matched Layers at the corners, CARVALHO Camille, KOZWaves, February 2014
Conclusion and prospects

Conclusion

* Need to take into account the black-hole wave to sort the guided modes and the leaky modes

* The PML method is an efficient method to reveal the guided modes

Prospects

* Maxwell 2D

* Non linear eigenproblem (dissipationless Drude’s model) $\epsilon(\omega) = \epsilon_{\infty} \left(1 - \frac{\omega_p^2}{\omega^2}\right)$

* What’s happening when $\mu < 0$ (metamaterials)?

* Open plasmonic waveguides
Thank you for your attention.