Inverse Optimal Control Problem: the Sub-Riemannian Case

2017
Publication type:
International conference with proceedings
Workshop:
Preprints of the 20th World Congress The International Federation of Automatic Control Toulouse, France, July 9-14, 2017
Keywords :
Optimal control; sub-Riemannian geometry; optimal trajectories; geodesics; inverse problem; nonholonomic systems; projective equivalence; affine equivalence;
Abstract:
The object of this paper is to study the uniqueness of solutions of inverse control problems in the case where the dynamics is given by a control-affine system without drift and the costs are length and energy functionals.
BibTeX:
@inproceedings{Jea-Mas-Zel-2017,
    author={Frédéric Jean and Sofya Maslovskaya and Igor Zelenko },
    title={Inverse Optimal Control Problem: the Sub-Riemannian Case },
    organization={Preprints of the 20th World Congress The International 
           Federation of Automatic Control Toulouse, France, July 9-14, 
           2017 },
    year={2017 },
    pages={502--507},
}